Math, asked by subhashattri07, 1 month ago


 { \tan(1) }^{ - 1}  +  { \cos( -  \frac{1}{2} ) }^{ - 1}  +   { \sin( \frac{ - 1}{2} ) }^{ - 1}
solve this question​

Answers

Answered by sandy1816
3

\huge\color{Black}\boxed{\colorbox{yellow}{❀Answer❀}}\\

 {tan}^{ - 1} (1) +  {cos}^{ - 1}( -   \frac{1}{2} ) +  {sin}^{ - 1} ( -  \frac{1}{2} ) \\   let \:  \: x =  {tan}^{ - 1}  1 \implies \: tanx  = 1 \\ x =  \frac{\pi}{4}  \\ since \:  \: range  \:  \: of \:  \: tan ^{ - 1}  \:  \: is \:  \: ( -  \frac{\pi}{2}    \:  \: \frac{\pi}{2} ) \\ hence \:  \: the \: principal \:  \: value \:  \: is \:  \:  \frac{\pi}{4}  \\ let \:  \: y =  {cos}^{ - 1} ( -  \frac{1}{2} ) \\ cosy =  -  \frac{1}{2}  \\ cosy =  - cos( \frac{\pi}{3} ) \\ cosy = cos(\pi -  \frac{\pi}{3} ) \\ y =  \frac{2\pi}{3}  \\ hence \: the \: principal \: value \: is \:  \frac{2\pi}{3}  \\ let \: z =  {sin}^{ - 1} ( -  \frac{1}{2} ) \\ sinz =  -  \frac{1}{2}  \\ sinz = sin( -  \frac{\pi}{6} ) \\ z =  -  \frac{\pi}{6}  \\ now \:  \:  {tan}^{ - 1} (1) +  {cos}^{ - 1} ( -  \frac{1}{2} ) +  {sin}^{ - 1} (  -  \frac{1}{2} ) \\  = x + y + z \\  =  \frac{\pi}{4}  +  \frac{2\pi}{3}  -  \frac{\pi}{6}  \\  =  \frac{3\pi + 8\pi - 2\pi}{12}  \\  =  \frac{9\pi}{12}  \\  =  \frac{3\pi}{4}

Similar questions