Math, asked by Anonymous, 11 months ago


  { \tan}^{ - 1}  \frac{ \sqrt{x} - x }{1 +  {x}^{ \frac{3}{2} } }  \\  \\
differentiation .​

Answers

Answered by kaushik05
75

 \huge \mathfrak{solution}

Let

y \:  =  {tan}^{ - 1}  \frac{ \sqrt{x} - 1 }{1 +  {x}^{ \frac{3}{2} } }  \\  \\  \rightarrow \: y =  {tan}^{ - 1}  \frac{ \sqrt{x}  - 1}{1 +  \sqrt{x} .x}  \\  \\  \rightarrow \: y =  {tan}^{ - 1} \sqrt{x}  -   {tan}^{ - 1} x

Now , Differentiate w.r.t. x we get ,

 \frac{dy}{dx}  =  \frac{d}{dx} ( {tan}^{ - 1}  \sqrt{x}  -  {tan}^{ - 1} x) \\  \\  \implies \:  \frac{dy}{dx}  =  \frac{1}{1 + x} . \frac{1}{2 \sqrt{x} }  -  \frac{1}{1 +  {x}^{2} }

Formula used :

  \bold{\frac{d}{dx}  {tan }^{ - 1}  =  \frac{1}{1 +  {x}^{2} } }

 \bold{ \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }

Answered by Anonymous
39

Answer:

\large\boxed{\sf{    \frac{1}{2 \sqrt{x} (1 + x)}   -  \frac{1}{1 +  {x}^{2} } }}

Step-by-step explanation:

To differentiate the given expression i.e.,

 \large{{ \tan}^{ - 1} \dfrac{ \sqrt{x} - x }{1 + {x}^{ \frac{3}{2} } } }

Let's assume that,

 \sf{y =  { \tan }^{ - 1}  \frac{ \sqrt{x}  - 1}{1 +  {x}^{ \frac{3}{2} } } } \\  \\  \sf{ =  > y =  { \tan }^{ - 1}  \frac{ \sqrt{x} - 1 }{1 +  x\sqrt{x} }}  \\  \\ \sf{  =  > y =  { \tan }^{ - 1}  \sqrt{x}  -  { \tan }^{ - 1} x}

Differentiating both the sides wrt x,

  \sf{=  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( { \tan}^{ - 1}  \sqrt{x}  -  { \tan }^{ - 1} x) }\\  \\   \sf{=  >  \frac{dy}{dx}  =  (\frac{1}{1 +  ({ \sqrt{x}) }^{2} }  \times  \frac{1}{2 \sqrt{x} } ) - ( \frac{1}{1 +  {x}^{2} } \times 1)} \\  \\ \sf{  =  >  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} (1 + x)}   -  \frac{1}{1 +  {x}^{2} } }

Concept Map :-

  •   \sf{\dfrac{d}{dx}  { \tan }^{ - 1} x =  \dfrac{1}{1 +  {x}^{2} } }

  •   \sf{\dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }
Similar questions