Math, asked by das2trish, 4 months ago



 \tan ^{ - 1} (  \frac{x + 1}{x - 1}  )  +  \tan^{ - 1} ( \frac{x - 1}{x} )  =  { \tan }^{ - 1} ( - 7)

Answers

Answered by BrainlyPopularman
21

GIVEN :

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{x + 1}{x - 1}  \right) + \tan^{ - 1}  \left( \dfrac{x - 1}{x}  \right) = { \tan }^{ - 1} ( - 7) \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

We know that –

 \\ \implies \bf \tan ^{ - 1}(x) +\tan ^{ - 1}(y) =  \tan ^{ - 1}  \left( \dfrac{x+y}{1 -xy}  \right)\\

• So that –

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{\dfrac{x + 1}{x - 1} +\dfrac{x - 1}{x} }{1 -\dfrac{x + 1}{x - 1} \times  \dfrac{x - 1}{x}}  \right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{x(x + 1) +  {(x - 1)}^{2}}{x(x - 1) - \{ {x}^{2} - 1\}}\right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{ {x}^{2} + x+ {x}^{2} + 1 -2x}{ {x}^{2} - x - {x}^{2} + 1}\right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{ 2{x}^{2}-x  + 1 }{1 - x}\right) = { \tan }^{ - 1} ( - 7) \\

• Now Let's compare –

 \\ \implies \bf \dfrac{ 2{x}^{2}  -x+ 1}{1 - x}=- 7 \\

 \\ \implies \bf 2{x}^{2} -x+ 1=- 7(1 - x) \\

 \\ \implies \bf 2{x}^{2}-x + 1=7x- 7 \\

 \\ \implies \bf 2{x}^{2}  - 8x + 8 = 0 \\

 \\ \implies \bf {x}^{2}  - 4x + 4 = 0 \\

 \\ \implies \bf {(x - 2)}^{2} = 0 \\

 \\ \implies \bf x = 2 \\

Hence , The value of 'x' is 2.


pulakmath007: Excellent
Answered by genius1947
2

Answer ⤵️

Given ⤵️

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{x + 1}{x - 1}  \right) + \tan^{ - 1}  \left( \dfrac{x - 1}{x}  \right) = { \tan }^{ - 1} ( - 7) \\

TO FIND ⤵️

☆Value of 'x' = ?

Solution ⤵️

We know:-

 \\ \implies \bf \tan ^{ - 1}(x) +\tan ^{ - 1}(y) =  \tan ^{ - 1}  \left( \dfrac{x+y}{1 -xy}  \right)\\

So that:-

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{\dfrac{x + 1}{x - 1} +\dfrac{x - 1}{x} }{1 -\dfrac{x + 1}{x - 1} \times  \dfrac{x - 1}{x}}  \right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{x(x + 1) +  {(x - 1)}^{2}}{x(x - 1) - \{ {x}^{2} - 1\}}\right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{ {x}^{2} + x+ {x}^{2} + 1 -2x}{ {x}^{2} - x - {x}^{2} + 1}\right) = { \tan }^{ - 1} ( - 7) \\

 \\ \implies \bf \tan ^{ - 1}  \left( \dfrac{ 2{x}^{2}-x  + 1 }{1 - x}\right) = { \tan }^{ - 1} ( - 7) \\

now, comparing:-

 \\ \implies \bf \dfrac{ 2{x}^{2}  -x+ 1}{1 - x}=- 7 \\

 \\ \implies \bf 2{x}^{2} -x+ 1=- 7(1 - x) \\

 \\ \implies \bf 2{x}^{2}-x + 1=7x- 7 \\

 \\ \implies \bf 2{x}^{2}  - 8x + 8 = 0 \\

 \\ \implies \bf {x}^{2}  - 4x + 4 = 0 \\

 \\ \implies \bf {(x - 2)}^{2} = 0 \\

 \\ \implies \bf x = 2 \\

• Therefore ,The value of 'x' is 2.

☆Answer:- The value of 'x' is 2.

\small{\textbf{\textsf{{\color{navy}\:{Hope}}\:{\purple{it}}\:{\pink{helps}}\:{\color{pink}{you!!}}}}}

Please scroll from right to left to see the whole answer completely.

Similar questions