Math, asked by kasvi70, 8 months ago


 { \tan }^{ - 1} ( \frac{x + 1}{x + 3} ) +  {tan}^{ - 1} ( \frac{x - 2}{x + 4} ) =  \frac{\pi}{4}
Solve it :​

Answers

Answered by CrEEpycAmp
52

{\fbox{\boxed {\huge{\rm{\red{Answer}}}}}}

Step-by-step explanation:

 \rightarrow \:   \large\mathtt{ { tan }^{ - 1} } \:  \Large\mathtt{[ \frac { \frac {x + 1}{x + 3} +  \frac{x - 2}{x + 4}  }{1 -  (\frac{x + 1 }{x + 3}) (\frac{x - 2}{ x + 4})  } ]} =  \Large \mathtt{ \frac{\pi}{4} }

 \rightarrow \:   \large \mathtt{ {tan}^{ - 1}  } \: \Large\mathtt{  [  \frac{ \frac{(x + 1)(x + 4) + (x - 2)(x + 3)}{(x + 3)(x + 4)} }{ \frac{(x + 3)(x + 4) - (x + 1)(x - 2)}{(x + 3)(x + 4)} } ] } =   \large \mathtt{\frac{\pi}{4}}

 \rightarrow \:  \large \mathtt{ {tan}^{ - 1}}   \:   \large \mathtt{  [  \frac{ {(x}^{2} +4x + x + 4) + ( {x}^{2}  + 3x - 2x - 6  }{( {x}^{2} + 4x + 3x + 12) - ( {x}^{2}  - 2x + x - 2)  } ] } =  \large \mathtt{ \frac{\pi}{4}}

 \rightarrow \:  \large \mathtt{ {tan}^{ - 1} } \:  \large \mathtt{  [  \frac{  {2x}^{2} + 6x - 2  }{8x + 14} ] }  =  \large \mathtt{  \frac{\pi}{4}}

 \rightarrow \:  \large \mathtt{tan}  \:  \large \mathtt{  [ {tan}^{ - 1} \:  \frac{ {2x}^{2} + 6x - 2 }{8x + 14}  ] } =  \large \mathtt{tan \frac{\pi}{4}}

 \rightarrow \: \large \mathtt{ \frac{ {2x}^{2}  + 6x - 2 }{8x + 14}  = 1}

  \rightarrow \:  \large \mathtt{ {2x}^{2 } + 6x - 2 = 8x + 14}

 \rightarrow \:  \large  \mathtt{ {2x}^{2}  - 2x - 16 = 0}

 \rightarrow \:  \large  \mathtt{D =  {b}^{2} - 4ac  } \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  =  \mathtt{(1) - 4(1)( - 8)} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \mathtt{ \sqrt{33}}

 \rightarrow \:     \large\fbox\mathtt{ \alpha  = \frac{1  \pm \sqrt{33} }{2}   }

{{\huge{\red{\bold{BeBrainly...!}}}}}

Similar questions