Math, asked by isnti, 10 months ago


 { \tan}^{ - 1} x  \:  +  \:  { \tan}^{ - 1} y \:   +  \:  { \tan }^{ - 1} z \:  = \pi
then show that
x + y + z = xyz​

Answers

Answered by Anonymous
5

Question :-

 { \tan}^{ - 1} x \: + \: { \tan}^{ - 1} y \: + \: { \tan }^{ - 1} z \: = \pi

then show that

x + y + z = xyz

Step by step explanation:-

Formula used :-

 \red{ { \tan}^{ - 1} x +  { \tan }^{ - 1} y +  { \tan}^{ - 1} z \:  } \\  \\  = \green{  { \tan }^{ - 1}  \bigg( \frac{x + y + z - xyz}{1 - xy - yz - zx}  \bigg)}

Solution :-

According to the question,

{ \tan}^{ - 1} x +  { \tan }^{ - 1} y +  { \tan}^{ - 1} z \:  \:  =  \pi \\  \\

Applied the given formula →

{ \tan }^{ - 1}  \bigg( \frac{x + y + z - xyz}{1 - xy - yz - zx}  \bigg) =  \pi \\  \\ \bigg( \frac{x + y + z - xyz}{1 - xy - yz - zx}  \bigg) \:  =  \tan( \pi)  \\  \\  \because \:  \tan(\pi)  = 0 \\  \\  \therefore \: \bigg( \frac{x + y + z - xyz}{1 - xy - yz - zx}  \bigg) \:  = 0 \\  \\  \implies \: x + y + z - xyz = 0 \\  \\  \implies \: \boxed{ x + y + z = xyz}

Hence proved.

Similar questions