Math, asked by venishrija1998, 9 months ago


 \tan ^{2} ( \alpha )  =    \cos ^{2} ( \beta) -  \sin  ^{2} \beta  then \: prove \: that\:  \cos ^{2} ( \alpha )  -  \sin ^{2} ( \alpha )  =  \tan ^{2} ( \beta )
pls answer these question guys​

Answers

Answered by Mihir1001
23

Step-by-step explanation:

We have,

 \begin{aligned} \\  & \qquad { \tan }^{2} ( \alpha ) =  { \cos }^{2} (  \beta ) -  { \sin }^{2} ( \beta )   \\ \\ & \implies  \frac{ { \sin }^{2} ( \alpha )}{ { \cos }^{2} ( \alpha )}  =  { \cos}^{2}( \beta ) -  { \sin}^{2}( \beta )  \\  \\ & \implies  \frac{ { \sin }^{2}( \alpha ) }{ { \cos }^{2}( \alpha ) { \cos }^{2}( \beta )  } =  \frac{  \cancel{{ \cos}^{2}(  \beta)} }{  \cancel{{ \cos }^{2} ( \beta) }}   -  \frac{ { \sin }^{2}( \beta ) }{ { \cos}^{2}( \beta ) }  \\ &\qquad \qquad \longrightarrow \left[ \sf dividing \: throughout \: by \:  { \cos }^{2}( \beta ) \right]  \\  \\ & \implies  \frac{ { \sin }^{2}( \alpha ) }{ { \cos }^{2}( \alpha ) { \cos }^{2}( \beta )  }  = 1 -  { \tan }^{2} ( \beta ) \\  \\ & \implies  { \tan }^{2}( \beta ) = 1 -  \frac{ { \sin }^{2}( \alpha ) }{ { \cos }^{2}( \alpha ) { \cos }^{2}( \beta )  } \\  \\ & \qquad \qquad \qquad =  \frac{{ { \cos }^{2}( \alpha ) { \cos }^{2}( \beta )  } -  { \sin }^{2}( \alpha ) }{ { \cos }^{2}( \alpha ) { \cos }^{2}( \beta )  }  \end{aligned}

Similar questions