Math, asked by khush490, 11 months ago


tan \: 2 \alpha  -  \tan( \alpha )  =  \tan( \alpha )  \sec(2 \alpha ) prove \: it

Answers

Answered by ranitiwari98
14

 \tan(2 \alpha  )  -  \tan( \alpha )  =  \sin(2 \alpha  -  \alpha )  \div  \cos(2 \alpha )  \cos( \alpha )  \\   =  \sin( \alpha )  \div  \cos( \alpha )  \cos(2 \alpha )  \\   = \tan( \alpha  )  \div  \cos(2 \alpha  )  \\  =  \tan( \alpha )  \sec(2 \alpha )

Step-by-step explanation:

hope it helps you

mark brainliest

Answered by TanikaWaddle
17

Answer:

To prove : \tan 2 \alpha - \tan \alpha =\tan\alpha .\sec 2\alpha

Explanation:

\tan 2 \alpha - \tan \alpha \\\\\tan 2 \alpha = \frac{2\tan alpha}{(1-\tan^2\alpha)}\\\\\frac{2\tan alpha}{(1-\tan^2\alpha)}-\tan\alpha\\\\\frac{2\tan\alpha}{1-\frac{\sin^2\alpha}{\cos^2\alpha}}-\tan\alpha\\\\\frac{2\tan \alpha \times \cos^2\alpha }{(\cos^2\alpha - \sin^2\alpha)}-\tan\alpha\\\\\frac{2\tan \alpha \cos^2\alpha}{\cos 2\alpha}-\tan \alpha\\\\2\tan \alpha\cos^2 \alpha\sec 2\alpha-\tan\alpha\\\\\tan\alpha(\frac{2\cos^2\alpha}{\cos 2 \alpha}-1)\\\\\tan\alpha(\frac{1}{\cos 2\alpha})

\\\\=\tan\alpha .\sec 2\alpha

hence proved

#Learn more :

https://brainly.in/question/11199433

Similar questions