Math, asked by sapnabhusal232, 1 month ago


tan ^{2} \beta \times  \csc {}^{2}  \beta  =  \sec {}^{2}  \beta
prove the following.​

Answers

Answered by user0888
117

\large{\boxed{\text{Answer}}}

\large{\text{\underline{Note:-}}}

Firstly,

\tan\theta=\dfrac{\sin x}{\cos x}

And,

\csc x=\dfrac{1}{\sin x} and \sec x=\dfrac{1}{\cos x}

\large{\text{\underline{Given to prove:-}}}

\hookrightarrow \tan^{2} \beta \times \csc^{2} \beta =\sec^{2} \beta

According to above,

\hookrightarrow \text{(L.H.S)}=\dfrac{\sin^{2} x}{\cos^{2} x}\times \dfrac{1}{\sin^{2} x}

\hookrightarrow \text{(L.H.S)}=\dfrac{1}{\cos^{2} x}

\hookrightarrow \text{(L.H.S)}=\sec^{2} \beta

Hence,

\hookrightarrow \text{(L.H.S)}=\text{(R.H.S)}

Hence proven.

Answered by Atlas99
100

To prove:

 \sf{ {tan}^{2} \beta  \times \: {csc}^{2}  \beta  =  {sec}^{2}  \beta  }

Solution:

 \sf{LHS =\frac{sin^2x}{cos^2x} \times\frac{1}{sin^2x}} \\

 \sf{=\frac{1}{cos^2x}} \\

 \sf{ =  {sec}^{2} \beta  }

 \sf{ = RHS}

Hence, proved!!

Similar questions