Math, asked by alkhayari0, 4 months ago


 tan(30 + x)  =   \frac{1 +  \sqrt{3 }  \tan(x) }{\sqrt{3}  -  \tan(x) }
Verify​

Answers

Answered by manissaha129
5

Answer:

 \frac{1 +  \sqrt{3} \tan(x)  }{ \sqrt{3}  -  \tan(x) }  \\ dividing\: numerator\: and\: denominator\: by\:\sqrt{3} ,\\we\:get \\= \frac{ \frac{1}{ \sqrt{3}  }  +  \tan(x) }{1 -  \frac{1}{ \sqrt{3} } \times  \tan(x)  }  \\as\:we\:know\:\tan(30°)=\frac{1}{\sqrt{3}}\\  =   \frac{ \tan(30°)  +  \tan(x) }{1 -  \tan(30°)  \times  \tan(x) }  \\ =   \boxed{ \tan(30° + x) }\\ (hence \: verified)


alkhayari0: can you explain more
manissaha129: hope the changes I have done now will help you
alkhayari0: can you explain before the last step
manissaha129: dear it is just the formula
manissaha129: tan(A+B)=(tanA+tanB)/(1-tanAtanB)
alkhayari0: CAn u exain the step of divining numerator
alkhayari0: explain
Anonymous: Gr8 answer! :)
manissaha129: Thanks dear
Similar questions