Math, asked by 165, 2 months ago


 \tan(a)  =  \frac{ \sin(17) -  \cos(17)  }{ \cos(17 ) +  \sin(17)  }   \\  \\ find \: the \: value \: of \:  \tan(a)

Answers

Answered by Saby123
22

Solution -

Let [ sin 17 - cos 17 ]/[ sin 17 + cos 17 ] = tan a = ß .

Let sin 17 = δ

Then , cos 17 = √(1- δ² )

The given equation now becomes -

> [ δ - √(1- δ²) ]/[ δ + √(1- δ²) ] = ß

Applying componendo and dividendo ;

> (ß+1)/(ß-1) = - δ/[ √( 1 - δ² ) ]

Substituting the values of δ and √(1- δ²)

> (ß + 1)/( ß - 1) = sin 17/ cos 17

> (ß + 1)/(ẞ - 1) = tan 17

Applying componendo dividendo again , both sides !

> [ ß + 1 + ß - 1 ]/[ ß + 1 - ß + 1] = [ tan 17 + 1]/[ tan 17 - 1 ]

> ß = [ tan 17 + 1 ]/[ tan 17 - 1 ]

> ß = - [ 1 + tan 17 ]/[ 1 - tan 17]

> ß = - [ tan ( 45 + 17) ]

> ß = - tan 62 = tan 28°

Hence

tan ( a ) = tan ( 28°)

> a = 28° .

This is the required answer !

________________________________

Answered by Vikramjeeth
12

*Answer:-

Let x = ( cos17 + sin17 ) / ( cos17 − sin17 )

Dividing Numerator & Denominator by cos 17

= ( 1 + tan17 ) / ( 1 − tan17 )

We know tan 45 = 1,

= ( tan45 + tan17 ) / ( 1 − tan45.tan17 )

tan( A + B ) = tan A + tan B / 1 - tan A.tan B

= tan62

Thus, ( cos 17 +sin 17 )/(cos 17-sin17) = tan 62

Similar questions