Answers
Solution -
Let [ sin 17 - cos 17 ]/[ sin 17 + cos 17 ] = tan a = ß .
Let sin 17 = δ
Then , cos 17 = √(1- δ² )
The given equation now becomes -
> [ δ - √(1- δ²) ]/[ δ + √(1- δ²) ] = ß
Applying componendo and dividendo ;
> (ß+1)/(ß-1) = - δ/[ √( 1 - δ² ) ]
Substituting the values of δ and √(1- δ²)
> (ß + 1)/( ß - 1) = sin 17/ cos 17
> (ß + 1)/(ẞ - 1) = tan 17
Applying componendo dividendo again , both sides !
> [ ß + 1 + ß - 1 ]/[ ß + 1 - ß + 1] = [ tan 17 + 1]/[ tan 17 - 1 ]
> ß = [ tan 17 + 1 ]/[ tan 17 - 1 ]
> ß = - [ 1 + tan 17 ]/[ 1 - tan 17]
> ß = - [ tan ( 45 + 17) ]
> ß = - tan 62 = tan 28°
Hence
tan ( a ) = tan ( 28°)
> a = 28° .
This is the required answer !
________________________________
*Answer:-
Let x = ( cos17 + sin17 ) / ( cos17 − sin17 )
Dividing Numerator & Denominator by cos 17
= ( 1 + tan17 ) / ( 1 − tan17 )
We know tan 45 = 1,
= ( tan45 + tan17 ) / ( 1 − tan45.tan17 )
tan( A + B ) = tan A + tan B / 1 - tan A.tan B
= tan62
Thus, ( cos 17 +sin 17 )/(cos 17-sin17) = tan 62