Math, asked by Kenveer, 11 months ago


 \tan(( \frac{\pi}{4} )  + thita) =  \frac{ \cos(thita) +  \sin(thita)  }{ \cos(thita)  -  \sin(thita) }

Answers

Answered by Anonymous
2

Answer:

  \huge \star \red{ \underline{question}}

 \tan( \frac{\pi}{4}  + \theta) = \frac{ \cos\theta + \sin\theta }{ \cos\theta - \sin\theta }

\huge \green{\underline{ solution}} \\  \\  \\using \: identities \:  \implies \\   \red{ \star} \: tan \:  \frac{ \pi}{4}  = 1 \\  \red{ \star} \: tan \theta =  \frac{sin \theta}{cos \theta}  \\   \red{ \star} \: tan(x + y) =  \frac{tanx + tany}{1 - tanx.tany}  \\  \\ step  - \: by \: step  - \: explanation \\  \\    \star firstly \: taking \: left \: hand \: side \\  \implies \: tan( \frac{ \pi}{4}  +  \theta) \\  \\ using \: given \: identity \\   \implies \:  \frac{tan \frac{ \pi}{4}  + tan \theta}{1 - tan \frac{ \pi}{4}.tan \theta }  \\  \\ \implies \:  \frac{1  +  \frac{sin \theta}{cos \theta} }{1 -  \frac{sin \theta}{cos \theta} }  \\  \\  \implies \red{taking \: LCM }\\  \\  \implies \frac{ \frac{cos \theta + sin  \theta}{cos \theta} }{ \frac{cos \theta - sin \theta}{cos \theta} }  \\  \\  \implies \:  \frac{cos \theta + sin \theta}{cos \theta - sin \theta}  \\ left \: hand \: side \:  = right \: hand \: side \:  \\  \\ hence\: proved

Similar questions