Math, asked by girl1605, 2 months ago


 \tan(x)  =  \frac{1}{ \sqrt{7} }
find the value of
   \frac{ {cosec}^{2}(x) -  {sec}^{2} (x) }{ {cosec}^{2}(x) +  {sec}^{2} (x) }

Answers

Answered by vipinkumar212003
1

Step-by-step explanation:

\blue{\mathfrak{\underline{\large{Given}}}:} \\ tan \: x \:  =  \frac{1}{ \sqrt{7} }   \\ \\  \blue{\mathfrak{\underline{\large{To \: find}}}:} \\  \frac{ {cosec}^{2}x -  {sec}^{2} \: x  }{{cosec}^{2}x +  {sec}^{2} \: x}  = ? \\ \\ \blue{\mathfrak{\underline{\large{Finding}}}:} \\ \frac{ {cosec}^{2}x -  {sec}^{2} \: x  }{{cosec}^{2}x +  {sec}^{2} \: x} \\ \blue{\mathfrak{\underline{\large{Divide \: numerator \: and \: denominator}}}}  \\ \blue{\mathfrak{\underline{\large{by \:  {cosec}^{2}x }}}:}\\  =   \frac{ \frac{{cosec}^{2}x -  {sec}^{2} \: x}{ {cosec}^{2}x } }{ \frac{{cosec}^{2}x  +   {sec}^{2} \: x}{ {cosec}^{2}x } }  \\\\  =  \frac{1 -  \frac{ {sec}^{2}x }{ {cosec}^{2}x } }{1  +   \frac{ {sec}^{2}x }{ {cosec}^{2}x} } \\\\  =  \frac{1 -  \frac{ \frac{1}{ {cos}^{2}x } }{ \frac{1}{ { sin }^{2}x } } }{1  +  \frac{ \frac{1}{ {cos}^{2}x } }{ \frac{1}{ { sin }^{2}x } }}  \\\\  =  \frac{1 -   \frac{ {sin}^{2}x }{ {cos}^{2}x }  }{1  +  \frac{ {sin}^{2}x }{ {cos}^{2}x } }  \\\\  =  \frac{1 -  {tan}^{2}x }{1  +  {tan}^{2}x}  \\\\  =  \frac{1 -  {( \frac{1}{ \sqrt{7} } )}^{2} }{1 +  {( \frac{1}{ \sqrt{7} } )}^{2} } \\ \\  =  \frac{1 -  \frac{1}{7} }{1 +  \frac{1}{7} } \\ \\  =  \frac{7 - 1}{7 + 1}  \\\\  =  \frac{6}{8} \\ \\  =  \frac{3}{4}  \\  \\ \red{\mathfrak{\underline{\large{Hope \: It \: Helps \: You }}}} \\ \blue{\mathfrak{\underline{\large{Mark \: Me \: Brainliest}}}}

Similar questions