is equal to
(a)4/√3
(b)4√3
(c)1
(d)4
Answers
Answered by
0
SOLUTION :
The correct option is (a) : 4/√3
We have to find the value of : tan 5° × tan 30° × 4 tan 85°
tan 5° × tan 30° × 4 tan 85°
= tan (90° - 85°) × tan 30° × 4 tan 85°
= cot 85° × tan 30° × 4 tan 85°
[ tan (90° - θ) = cot θ]
= cot 85° × tan 30° × 4 tan 85°
= 4(cot 85° × tan 85°) × tan 30°
= 4 × 1 × 1/√3
[ cot θ × tan θ = 1, tan 30° = 1/√3]
= 4/√3
tan 5° × tan 30° × 4 tan 85° = 4/√3
Hence, the value of tan 5° × tan 30° × 4 tan 85° is 4/√3 .
HOPE THIS ANSWER WILL HELP YOU..
Answered by
0
Answer:
Option(A)
Step-by-step explanation:
Given Equation is tan5° * tan30° * 4tan85°
∴ tan θ = (1/cot θ)
= tan(90-85) * tan30 * 4(1/cot85)
∴ tan(90 - θ) = cot θ.
= cot85 * (1/√3) * (4/cot85)
= (4/√3).
Hope it helps!
Similar questions