Math, asked by KAPILKUMARGAUTAM, 11 months ago


tell me any one  the value  sin18 \\  \\

Answers

Answered by Anonymous
2

To find the value of sin 18°

Let A = 18°

Therefore, 5A = 90°

⇒ 2A + 3A = 90˚

⇒ 2A= 90˚ - 3A

Taking sine on both sides, we get

sin 2A = sin (90˚ - 3A) = cos 3A we know , sin(90 - A) = cos A

⇒ 2 sin A cos A = 4cos^3 A - 3 cos A using formulas for sin 2A and cos 3A

⇒ 2 sin A cos A - 4cos^3A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos^2 A + 3) = 0

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin θ - 4 (1 - sin^2 A) + 3 = 0

⇒ 4 sin^2 A + 2 sin A - 1 = 0, which is a quadratic in sin A

Using SHRI DHAR ACHRYA formula

x = [-b ± √(b^2 - 4ac)] / 2a

18° lies in 1st quadrant,and sine is positive in 1st quadrant, so we take only positive value.

Therefore, sin 18° = sin A = −1+5–√4 = 0.30901699437

Thank you .

The explanation in video :

38.7k Views ·

How can I find value of cos37°?

What is the value of 2sinxsin3x?

How do I find the value of sin18 using complex numbers, more specifically using polar coordinates?

What is the value of 435+552?

How do I find the value of tan 18 degrees?

Question is Sin18° = ?

Let x = 18°

so, 5x = 90°

now we can write

2x + 3x = 90°

so 2x = 90° - 3x

now taking sin both side we can write

sin2x = sin(90°-3x)

sin2x = cos3x [as we know, sin(90°-3x) = Cos3x ]

so evaluating we can write

2sinxcosx =4cos³x - 3cosx [as we know, Cos3x = 4cos³x - 3cosx, This I will explain later ]

Now, 2sinxcosx - 4cos³x + 3cosx = 0

cosx(2sinx - 4cos²x + 3) = 0

Now divding both side by cosx we get,

2sinx - 4cos²x + 3 = 0

2sinx - 4(1-sin²x) + 3 = 0 [as we know, cos²x = (1-sin²x), by sin²x + cos²x = 1 ]

2sinx - 4 + 4sin²x + 3 = 0

2sinx + 4sin²x - 1 = 0

we can write it as,

4sin²x + 2sinx - 1 = 0

Now apply Sridhar Acharya Formula Here,

ax² + bx + c = 0

so, x = (-b ± √(b² - 4ac))/2a

now applying it in the equation

sinx =

(-2 ± √(2² - 44(-1)))/2.(4)

sinx = (-2 ± √(4 +16))/8

sinx = (-2 ± √20)/8

sinx = (-2 ± 2.√5) / 8

sin x = 2(-1 ± √5 ) / 8

sin x = (-1 ± √5)/4

sin18° = (-1 ± √5)/4

Now how I get the Cos3x value?

Cox3x = Cos(2x+x)

Cox3x = Cos2xCosx - Sin2xSinx

Cox3x = (2Cos²x - 1)Cosx - (2SinxCosx)Sinx

Cox3x = 2Cos³x -Cosx - 2Sin²xCosx

Cox3x = 2Cos³x -Cosx - 2Cosx(1-Cos²x)

Cox3x = 2Cos³x -Cosx - 2Cosx + 2Cos³x

Cox3x = 4Cos³x - 3Cosx

6.3k Views ·

Let A = 18°

Therefore, 5A = 90°

⇒ 2A + 3A = 90˚

⇒ 2θ = 90˚ - 3A

Taking sine on both sides, we get

sin 2A = sin (90˚ - 3A) = cos 3A

⇒ 2 sin A cos A = 4cos^3 A - 3 cos A

⇒ 2 sin A cos A - 4cos^3A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos^2 A + 3) = 0

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin θ - 4 (1 - sin^2 A) + 3 = 0

⇒ 4 sin^2 A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin θ = −2±−4(4)(−1)√2(4)−2±−4(4)(−1)2(4)

⇒ sin θ = −2±4+16√8−2±4+168

⇒ sin θ = −2±25√8−2±258

⇒ sin θ = −1±5√4−1±54

Now sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = −1±5√4


KAPILKUMARGAUTAM: so beautiful
Similar questions