Math, asked by Anonymous, 3 months ago


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

please see the attachment

Attachments:
Answered by mathdude500
1

Identity Used :-

(1). \: \boxed{ \blue{ \tt \:  {x}^{2} +  {y}^{2}  =  {(x + y)}^{2} - 2xy  }}

(2). \: \boxed{ \blue{ \tt \: {sin}^{2}x +  {cos}^{2}y = 1   }}

\large\underline\purple{\bold{Solution :-  }}

Consider,

 \bull \:  \bf \: LHS

\rm :\implies\:\dfrac{ {sin}^{4} \theta \: +  {cos}^{4}  \theta \: }{1 - 2 {sin}^{2}\theta \: {cos}^{2} \theta \: }

\rm :\implies\: \dfrac{{( {sin}^{2} \theta \:)}^{2}  +  {( {cos}^{2}\theta \:) }^{2}}{1 - 2 {sin}^{2} \theta \: {cos}^{2}\theta \: }

\rm :\implies\:\dfrac{  {\bigg( {sin}^{2}\theta \: +  {cos}^{2} \theta \:  \bigg)}^{2}   - 2 {sin}^{2} \theta \: {cos}^{2}\theta \: }{1- 2 {sin}^{2} \theta {cos}^{2} \theta \: }

\rm :\implies\:\dfrac{1 - 2 {sin}^{2}\theta \: {cos}^{2}\theta \:  }{1 - 2 {sin}^{2}\theta \: {cos}^{2}\theta \:  }

\rm :\implies\:1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

Similar questions