[/tex]
No spam . full solution.
Answers
Gɪᴠᴇɴ :-
- x + y = 1
- xy(xy - 2) = 12
Tᴏ Fɪɴᴅ :-
- x⁴ + y⁴ = ?
Sᴏʟᴜᴛɪᴏɴ :-
→ (x + y) = 1
Squaring Both Sides we get,
→ (x + y)² = (1)²
using (a + b)² = a² + b² + 2ab in LHS , we get,
→ x² + y² + 2xy = 1
→ x² + y² = (1 - 2xy) ------------- Equation ❶
____________
Now,
➻ x⁴ + y⁴
Adding & Subtracting 2x²y² we get,
➻ x⁴ + y⁴ + 2x²y² - 2x²y²
➻ (x⁴ + y⁴ + 2x²y²) - 2x²y²
Comparing it with a² + b² + 2ab = (a + b)² Now,
➻ (x² + y²)² - 2x²y²
Putting value of Equation ❶ Now,
➻ (1 - 2xy)² - 2x²y²
using (a - b)² = a² + b² - 2ab Now, we get
➻ 1 + (2xy)² - 2*1*2xy - 2x²y²
➻ 1 + 4x²y² - 4xy - 2x²y²
➻ 1 - 4xy + 4x²y² - 2x²y²
➻ 1 - 4xy + 2x²y²
➻ 1 + 2x²y² - 4xy
➻ 1 + 2xy(xy - 2)
Finally, Putting given value of xy(xy - 2) = 12 Now, we get,
➻ 1 + 2*12
➻ 1 + 24
➻ 25 (Ans.)
________________________
For One More Solution Refer To Image Now.
________________________
- X + Y = 1,
- xy(xy - 2) = 12
- x⁴ + y⁴ = ?
↪( x+y ) = 1
↪( x+y )² = (1)² (Squaring both sides)
↪x² + y² + 2xy = 1(using (a+b)² = a² + b² + 2ab in LHS)
↪x² + y² + 2xy = 1
↪x² + y² = (1 - 2xy) ___(EQ.1)
So,
↪x⁴ + y⁴ (Adding & Subtracting 2xy²y²)
↪x⁴ + y⁴ + 2xy²y² - 2xy²y²
↪ (x⁴ + y⁴ + 2xy²y²) - 2xy²y²
↪(x² + y²)² - 2xy²y² (comparing it with a² + b² + 2ab= a +b²)
↪(1 - 2xy)² - 2xy²y²
↪1 + (2xy)² - 2 × 1 × 2xy - 2xy²y² (putting the values of equation.1 )
↪1 + 4xy²y² - 4xy - 2x²y² (using (a-b)² = a² + b² - 2ab )
↪1 + 2xy²y² - 4xy
↪1 + 2xy(xy - 2)
↪1 + 12 × 2 (using the value of xy(xy-2) = 12)