Math, asked by MissStar, 8 months ago


[tex]\bf{if  \: x+y=1,xy(xy-2)=12, x^4+y^4=?}[/tex]
No spam . full solution. ​


Anonymous: Great Question!!

Answers

Answered by RvChaudharY50
82

Gɪᴠᴇɴ :-

  • x + y = 1
  • xy(xy - 2) = 12

Tᴏ Fɪɴᴅ :-

  • x⁴ + y⁴ = ?

Sᴏʟᴜᴛɪᴏɴ :-

→ (x + y) = 1

Squaring Both Sides we get,

→ (x + y)² = (1)²

using (a + b)² = a² + b² + 2ab in LHS , we get,

→ x² + y² + 2xy = 1

→ x² + y² = (1 - 2xy) ------------- Equation

____________

Now,

➻ x⁴ + y⁴

Adding & Subtracting 2x²y² we get,

➻ x⁴ + y⁴ + 2x²y² - 2x²y²

➻ (x⁴ + y⁴ + 2x²y²) - 2x²y²

Comparing it with a² + b² + 2ab = (a + b)² Now,

➻ (x² + y²)² - 2x²y²

Putting value of Equation ❶ Now,

➻ (1 - 2xy)² - 2x²y²

using (a - b)² = a² + b² - 2ab Now, we get

➻ 1 + (2xy)² - 2*1*2xy - 2x²y²

➻ 1 + 4x²y² - 4xy - 2x²y²

➻ 1 - 4xy + 4x²y² - 2x²y²

➻ 1 - 4xy + 2x²y²

➻ 1 + 2x²y² - 4xy

➻ 1 + 2xy(xy - 2)

Finally, Putting given value of xy(xy - 2) = 12 Now, we get,

➻ 1 + 2*12

➻ 1 + 24

25 (Ans.)

________________________

For One More Solution Refer To Image Now.

________________________

Attachments:

RvChaudharY50: wc .❤️
Anonymous: awesome !
RvChaudharY50: Thanks . ❤️
Anonymous: वाह रे छोरे , जमा गच
Anonymous: Answer gch h ya fir chora xD
Anonymous: xD
Anonymous: answer xd
Anonymous: Hehe xD
RvChaudharY50: Thanks bro.
Anonymous: ✨✨✨ Awesome As Always ✨✨✨
Answered by Anonymous
38

\rule{200}2

\huge\tt{GIVEN:}

  • X + Y = 1,
  • xy(xy - 2) = 12

\rule{200}2

\huge\tt{TO~FIND:}

  • x⁴ + y⁴ = ?

\rule{200}2

\huge\tt{SOLUTION:}

↪( x+y ) = 1

( x+y )² = (1)² (Squaring both sides)

+ + 2xy = 1(using (a+b)² = + + 2ab in LHS)

+ + 2xy = 1

+ = (1 - 2xy) ___(EQ.1)

So,

x⁴ + y⁴ (Adding & Subtracting 2xy²y²)

x⁴ + y⁴ + 2xy²y² - 2xy²y²

(x⁴ + y⁴ + 2xy²y²) - 2xy²y²

( + )² - 2xy²y² (comparing it with + + 2ab= a +)

(1 - 2xy)² - 2xy²y²

1 + (2xy)² - 2 × 1 × 2xy - 2xy²y² (putting the values of equation.1 )

1 + 4xy²y² - 4xy - 2x²y² (using (a-b)² = + - 2ab )

1 + 2xy²y² - 4xy

1 + 2xy(xy - 2)

1 + 12 × 2 (using the value of xy(xy-2) = 12)

1 + 24

25

\rule{200}2


Anonymous: awesome sista
Anonymous: Thanks!
ItzArchimedes: Gr8 answering
Anonymous: Thanks! ^^
ItzArchimedes: wlcm ^_^
Anonymous: Great
Anonymous: sister?
Anonymous: Thanks! always there for help ^^"
Anonymous: wlcm
ItzArchimedes: wlcm ;)
Similar questions