Math, asked by Anonymous, 10 months ago


(tex) \huge \mathfrak \red {question}
THE AREA OF A CIRCLE IS πx²
+ 10π x + 25π FIND THE RADIUS OF THE CIRCLE.
______________________
❌❌ NO SPAMMING ❌❌

Answers

Answered by Brâiñlynêha
16

Area of circle

\sf \pi x^2+10 \pi x +25\pi

  • We have to find the radius of circle

Area of circle is given the quadratic form

now first find the value of x

By Quadratic formula

\boxed{\sf \ x= \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

Where ,

a= coefficient of \sf x^2

b= coefficient of x

c= constant term

\sf \dag\ \ \ \pi x^2+10\pi x+ 25 \pi \\ \\ \sf\bullet a= \pi \ \ \bullet b= 10\pi \ \ \bullet \ c= 25  \pi

Put the values in the formula

\mapsto\sf x= \dfrac{ -10\pi \pm \sqrt{(-10\pi )^2-4\times \pi \times 25\pi}}{2\times \pi}\\ \\ \\  \mapsto\sf x= \dfrac{-10\pi \pm \sqrt{100\pi^2 - 100\pi^2}}{2\pi}\\ \\ \\  \mapsto\sf x= \dfrac{-10 \pi \pm\sqrt{ 0}}{ 2\pi }\\ \\ \\ \mapsto\sf x= \dfrac{-10\pi \pm 0}{2 \pi}\\ \\ \\ \mapsto\sf x= \dfrac{-10\pi}{2\pi}+\dfrac{0}{2\pi} \ , \ \ \dfrac{-10\pi}{2\pi}-\dfrac{0}{2\pi}\\ \\ \\ \mapsto\sf x= \cancel{\dfrac{-10\pi}{2\pi}}\ \ \cancel{\dfrac{-10\pi}{2\pi}}\\ \\ \\ \mapsto\sf x= -5 ,-5 \\ \\ \mapsto\sf x= -5

  • Now the Area of circle

\sf \pi x^2+10\pi x+25\pi \\ \\ \mapsto\sf \pi( x^2+10x+25)\\ \\ \mapsto\sf \pi(x^2+5x+5x+25)\\ \\ \mapsto\sf \pi [x(x+5)+5(x+5)]\\ \\ \mapsto\sf \pi [(x+5)(x+5)]\\ \\ \sf\bullet\ \ Put \ value \ of \ x\\ \\ \mapsto\sf \pi[(-5+5)(-5+5)]\\ \\ \mapsto\sf \pi(0)\\ \\ \mapsto\sf Area \ of \ circle =  0

Now find the radius of circle

\boxed{\bigstar{\sf\ Area \ of \ circle = \pi r^2}}

\mapsto\sf \pi r^2= 0\\ \\ \mapsto\sf r^2= \dfrac{0}{\pi}\\ \\ \mapsto\sf r= \sqrt{0}\\ \\ \mapsto\sf r= 0 \ unit

\underline{\bigstar{\sf\ Radius\ of \ circle= 0}}


RvChaudharY50: Awesome.
Brâiñlynêha: Thanka
EliteSoul: Nice ♡
Anonymous: Excellent !
Brâiñlynêha: Thanks :D
Answered by ItzArchimedes
51

GIVEN:

  • Area of circle = πx² + 10πx + 25π

TO FIND :

  • Radius of circle

SOLUTION:

Area of circle = πx² + 10πx + 25π

It is in the form of a quadratic polynomial

Finding the roots by quadratic formula

x = - b ±b² - 4ac/2a

Here,

  • a = π
  • b = 10π
  • c = 25π

Substituting the values

→ x = -10π ± √(10π)² - 4(π)(25π)/2(π)

→ x = -10π ± √100π² - 100π²/2π

→ x = - 10π/2π

→ x = - 5

Substituting the value of x in area of circle

→ πx² + 10πx + 25π

→ π(-5)² + 10(-5)π + 25π

→ 25π - 50π + 25π

→ 50π - 50π

→ 0

Area of circle = 0

Finding radius by using area of circle = πr²

πr² = 0

= 0/π

r = 0

.°. Hence, radius = 0 m

Similar questions