Math, asked by shaqib22, 1 year ago



please please give me answer​

Attachments:

Answers

Answered by Anonymous
5

Step-by-step explanation:

 \tan ^{ - 1}  \frac{ \sqrt{1 +  {a}^{2}  {x}^{2} } - 1 }{ ax } \\

here, put ax = tanΦ , Φ = tan^(-1)(ax)

 =  \tan {}^{ - 1}  (\frac{ \sqrt{1 +  { \tan }^{2} \: theta } - 1}{ \tan \: theta } )\\

we know, 1 + tan²Φ = sec²Φ

 =  { \tan }^{ - 1} ( \frac{ \sqrt{ \sec ^{2} \: theta  }  - 1}{ \tan \: theta } )\\

 =  { \tan}^{ - 1} ( \frac{ \sec \: theta \:  - 1 }{tan \: theta} )\\

 =   { \tan }^{ - 1}  ( \frac{ \frac{1}{ \cos \: theta}  - 1}{ \frac{ \sin \: theta }{ \cos \: theta} } )\\

 =  { \tan }^{ - 1} ( \frac{ \frac{1 -  \ \: cos \: theta}{ \cos \: theta} }{ \frac{sin \: theta}{cos \: theta} } )\\

 =  { \tan }^{ - 1} ( \frac{1 - cos \: theta}{sin \: theta} )\\

here we know ,

cos2Φ = 1 - 2sin²Φ

cos 2Φ -1 = -2sin²Φ

taking (-1) on both the sides

-cos 2Φ + 1 = 2sin²Φ

2sin²Φ = 1 - cos2Φ

1 - cosΦ = 2sin²(Φ/2)

And, Sin2Φ = 2sinΦ. cosΦ

therefor

sinΦ = 2 sin(Φ/2).cos (Φ/2)

   =  { \tan}^{ - 1} ( \frac{2 { \sin}^{2}  (\frac{theta}{2} )}{2 \sin( \frac{theta}{2} ) . \cos( \frac{theta}{2} ) }) \\

 =  \tan ^{  - 1} ( \frac{ \sin \: theta}{cos \: theta} )\\

 =  \tan ^{ - 1} (  \tan(  \frac{theta}{2}  ))  =  \frac{theta}{2}\\

here, theta = tan^{-1}(ax )

 = \frac{\tan^{-1}(ax)}{2}

\boxed {= \frac{1}{2} tan^{-1}(ax)}

Similar questions