Math, asked by ravindergupta26706, 7 months ago



please tell answer of this question

Attachments:

Answers

Answered by prince5132
4

GIVEN :-

 \implies \bf \: 9 ^{x}  \times 3 ^{2}  \times  \bigg \{ {3}^{ \frac{ - x}{2} }  \bigg \} ^{ - 2}  =  \dfrac{1}{27}

TO FIND :-

 \implies \bf \: The  \: value \:  of \:  x

SOLUTION :-

\to \rm \: 9 ^{x}  \times 3 ^{2}  \times  \bigg \{ {3}^{ \frac{ - x}{2} }  \bigg \} ^{ - 2}  =  \dfrac{1}{27}  \\  \\  \to \:  \rm \: 3 ^{2x}  \times 3 ^{2}  \times  \bigg \{3 ^{x}  \bigg \} \:  =  \dfrac{1}{27}  \\  \\   \star \: \bf \: By \:  using   \: \: x ^{a}  \times x ^{b}  =  {x}^{a \:  + b}  \\  \\  \to \rm \: (3) ^{2x + 2 + x}  =  \dfrac{1}{27}  \\  \\  \to \rm \: (3) ^{3x + 2}  = (3) ^{  - 3}

➠ Here the bases of L.H.S and R.H.S are same, so there exponents will be also same.

Hence by comparing both the sides we get,

 \to \rm \: 3x + 2 =  - 3 \\  \\  \to \rm3x =  - 3 - 2 \\  \\  \to \rm \: 3x =  - 5 \\  \\  \to \rm \:  \boxed{ \red{x =  \dfrac{ - 5}{3} }}

Hence the value of x is -5/3.

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{7cm} \\ \sf{ $  \implies \bf \sqrt[n]{ \sqrt[m]{ \sqrt[p]{((a^{x} )^{y}) ^{z}  } } }  = (a ^{xyz} )^{ \frac{1}{mnp} }  = a ^{ \frac{xyz}{mnp} }$} \\ \\ \sf{ $ \implies a^m \times a^n = a^{m+n}$} \\  \\  \sf{$ \implies {a}^{m} \times b^m = ab^m $} \\  \\ \sf{$ \implies \dfrac{a^m}{a^n} = a^{m - n} ( \tt{ If  \: m  > n} ) $} \\  \\ \sf{$ \implies \dfrac{a^m}{ a^n} = \dfrac{ 1}{ a^{n-m} } ( \tt{ If  \: n > m )}$} \\  \\ \sf{$ \implies (a^m)^n = a^{mn}$ } \\  \\ \sf{$ \implies a^{-n} = \dfrac{1}{ a^n}$}\end{minipage}}

Similar questions