Math, asked by Anonymous, 3 months ago

~~~~~~~~{\bf{Simplify}} -
~
 \frac{3}{ \sqrt{5}  +  \sqrt{2} }  -  \frac{2}{ \sqrt{7}  +  \sqrt{5} }  +  \frac{5}{ \sqrt{7}  -  \sqrt{2} }
{\bf\pink{All \: The \: Best !! \: ♡}}

Answers

Answered by Anonymous
44

\large {\textsf {\textbf \purple {✿ \: Question \:➯ }}}

Simplify the following :-

\sf  \cfrac{3}{ \sqrt{5}  +  \sqrt{2} }   - \cfrac{2}{ \sqrt{7}  +  \sqrt{5} }  +  \cfrac{5}{ \sqrt{7} -  \sqrt{2}  }

 \\

\large {\textsf {\textbf \purple {✿  \: Solution \: ➯}}}

Rationalising the denominators :-

\blue{(1) ➯} \: \sf  \cfrac{3}{ \sqrt{5} +  \sqrt{2}    }  \times ( \cfrac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{5} -  \sqrt{2}  } )

\blue ➯ \:  \sf  \cfrac{3( \sqrt{5} -  \sqrt{2})  }{ { \sqrt{5} }^{2}  -  { \sqrt{2} }^{2} }  =  \cfrac {\cancel3 (\sqrt{5}  -  \sqrt{2} )}{\cancel3}

\underline {\boxed {\blue ➯ \:  \sf  \cfrac{3}{ \sqrt{5} -  \sqrt{2}  }  =  \sqrt{5}  -  \sqrt{2} }}

\blue {(2)➯}  \: \sf \cfrac{2}{ \sqrt{7} +  \sqrt{5}  }  \times ( \cfrac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} } )

\blue ➯ \:  \sf  \cfrac{2( \sqrt{7}  -  \sqrt{5} )}{ { \sqrt{7} }^{2}  -  { \sqrt{5} }^{2} }  =  \cfrac{ \cancel2( \sqrt{7}  -  \sqrt{5}) }{ \cancel2}

\underline {\boxed {\blue ➯ \:  \sf  \cfrac{2}{ \sqrt{7} +  \sqrt{5} }=  \sqrt{7}    -  \sqrt{5}}}

\blue{(3) ➯} \:\sf  \cfrac{5}{ \sqrt{7}  -  \sqrt{2} }  \times ( \cfrac{ \sqrt{7}  +  \sqrt{2} }{ \sqrt{7}  +  \sqrt{2} } )

\blue ➯ \:  \sf  \cfrac{5( \sqrt{7} + \sqrt{2} ) }{ \sqrt{7}^2 + { \sqrt{5} }^{2} }  =  \cfrac{ \cancel5( \sqrt{7}   + \sqrt{2} )}{ \cancel5}

\underline {\boxed {\blue ➯ \:  \sf  \cfrac{5}{ \sqrt{7}   -  \sqrt{2} } =   \sqrt{7}  + \sqrt{2} }}

Now, substituting and solving :-

\blue ➯ \:  \sf ( \sqrt{5} - \sqrt{2})-( \sqrt{7}   -  \sqrt{5} ) + ( \sqrt{7}  + \sqrt{2} )

\blue ➯~\sf  \sqrt{5}  -  \sqrt{2} -  \sqrt{7}    +   \sqrt{5}  +  \sqrt{7}  +  \sqrt{2}

\underline {\boxed {\blue {\therefore ~\sf  2 \sqrt{5}   }}}

 \\

_____________________

@Sita05❄️

Similar questions