Math, asked by Anonymous, 7 months ago

 \\
\sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A}

Answers

Answered by Anonymous
25

\;\;\underline{\textbf{\textsf{ To Prove  :-}}}

 \\

\sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A}

 \\

\;\;\underline{\textbf{\textsf{  Proof :-}}}

 \\

L.H.S

 \\

 \sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA}

 \\

\sf \dfrac{sinA + cosA \small(sinA + cosA\small) + sinA - cosA\big(sinA - cosA\small)}{\small(sinA - cosA\small)\small(sinA + cosA\small)}

 \\

 \sf \dfrac{\small(sinA + cosA\small)^2 + \big(sinA - cosA\small)^2}{sin^2A - cos^2A}

 \\

 \sf \dfrac{sin^2A + cos^2A + 2(sinA)(cosA) + sin^2A + cos^2A - 2(sinA)(cosA)}{sin^2A - cos^2A}

 \\

 \sf \dfrac{1 + 1}{sin^2A - cos^2A}

 \\

\sf \dfrac{2}{sin^2A - cos^2A}

 \\

R.H.S

 \\

\;\;\underline{\textbf{\textsf{Hence -}}}

 \\

 \\

 \leadsto  \  {\boxed{\tt{LHS = RHS}}}

 \\

 \therefore{ \underline{\bf{(Proved)}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions
Math, 7 months ago