Math, asked by sajan6491, 5 hours ago

[/tex][tex][tex][/tex]​
Don't spam

Attachments:

Answers

Answered by mathdude500
5

Given Question

Evaluate the following

\displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}  }  \: dx

 \red{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}  }  \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}  }  \: dx -  -  - (1)

We know that

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(a + b - x) \: dx \: }}

So, using this property, we get

Change

 \red{\rm :\longmapsto\:x \to \: 2 + 4 - x = 6 - x}

\rm :\longmapsto\:I = \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - (6 - x))} }{ \sqrt{ln(9 -(6 -  x))} +  \sqrt{ln(6 - x + 3)}  }  \: dx

\rm :\longmapsto\:I = \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(3 + x)} }{ \sqrt{ln(3 + x)} +  \sqrt{ln(9 - x)}  }  \: dx -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2I = \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}}dx + \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(x + 3)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}}dx

\rm :\longmapsto\:2I = \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)}  + ln \sqrt{(x + 3)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}}dx

\rm :\longmapsto\:2I = \displaystyle\int_{2}^{4}\rm  1dx

\rm :\longmapsto\:2I =  \bigg|x\bigg| _{2}^{4}\rm

\rm :\longmapsto\:2I = 4 - 2

\rm :\longmapsto\:2I = 2

\rm :\longmapsto\:I = 1

Hence,

\boxed{\tt{ \displaystyle\int_{2}^{4}\rm  \frac{ \sqrt{ln(9 - x)} }{ \sqrt{ln(9 - x)} +  \sqrt{ln(x + 3)}  }  \: dx = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(y) \: dy \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \:  -  \: \displaystyle\int_{b}^{a}\rm f(x) \: dx \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{0}^{a}\rm f(x) \: dx \:  =  \: \displaystyle\int_{0}^{a}\rm f(a - x) \: dx \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  =  \:2 \displaystyle\int_{0}^{a}\rm f(x) \: dx \: if \: f(2a - x) = f(x) \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  = 0 \: if \: f(2a - x) = -  f(x) \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{ - a}^{a}\rm f(x) \: dx \:  = 0 \: if \: f(- x) = -  f(x) \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{ - a}^{a}\rm f(x) \: dx \:  =  \:2 \displaystyle\int_{0}^{a}\rm f(x) \: dx \: if \: f( - x) = f(x) \: }}

Similar questions