Math, asked by nerd66, 1 year ago

 \text{If} \:  \:  a+b+c = 0 \:   \:  \text{find value of} \\ ( \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ca} +  \frac{ {c}^{2} }{ab} )

Answers

Answered by abhi569
67


It is given that the value of a + b + c is 0.


= > a + b + c = 0

= > a + b = - c

= > ( a + b )^3 = ( - c )^3

= > a^3 + b^3 + 3ab( a + b ) = - c^3


From above, a + b = - c

= > a^3 + b^3 + 3ab( - c ) = - c^3

= > a^3 + b^3 - 3abc = - c^3

= > a^3 + b^3 + c^3 = 3abc

 \implies  \dfrac{ {a}^{3} +  {b}^{3}  +  {c}^{3}   }{abc}  = 3 \\  \\   \\ \implies  \dfrac{ {a}^{3} }{abc}  +  \dfrac{ {b}^{3} }{abc}  +  \dfrac{ {c}^{3} }{abc}  = 3 \\  \\  \\  \implies  \dfrac{ {a}^{2} }{bc}  +  \dfrac{ {b}^{2} }{ac}  +  \dfrac{ {c}^{2} }{ab}  = 3



Hence, the required numeric value of  \dfrac{ {a}^{2} }{bc}  +  \dfrac{ {b}^{2} }{ac}  +  \dfrac{ {c}^{2} }{ab} is 3.

Anonymous: Nice answer bhai
abhi569: :-)
buddy5332: tq
abhi569: Welcome
buddy5332: scary dp
abhi569: Yes, it is. But don't use comment section for chats
buddy5332: ok
abhi569: :-)
Answered by Anonymous
73
➡➡<b><u>hey buddyy❤❤❤

==>> Hey buddy,,....

given= a + b + c = 0,,,

 ( \frac{ {a}^{2} }{bc} + \frac{ {b}^{2} }{ca} + \frac{ {c}^{2} }{ab} )...

plz refer attachment ...

and ans will be 3...
<i><b><u><marquee>rgrds,,, @stylg...
Attachments:

sexyesha: hi
buddy5332: nice
buddy5332: do u remember me
Similar questions