Math, asked by Anonymous, 23 days ago


\text{If \:$ \alpha,\beta $\: are \: roots of equation } \\ \text{$x^2+px+1;\gamma,\delta$ the roots of equation }\\\text{$x^2+qx+1=0$, then find $(\alpha-\gamma)(\alpha+\delta)(\beta-\gamma)(\beta+\delta)$}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto \alpha,\beta \: are \:  \: roots \:  of \:  x^2+px+1

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:\alpha + \beta =  - \dfrac{p}{1}  =  -  \: p

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:\alpha \beta = \dfrac{1}{1}  =1

Also, given that,

\rm :\longmapsto \: \gamma,\delta \: are \:  \: roots \:  of \:  x^2+qx+1

So,

\bf\implies \:\gamma + \delta =  -  \: \dfrac{q}{1}  =  - q

and

\bf\implies \:\gamma \delta =  \: \dfrac{1}{1}  = 1

Now, Consider

\rm :\longmapsto\:(\alpha-\gamma)(\alpha+\delta)(\beta-\gamma)(\beta+\delta)

can be re-arranged as

\rm :\longmapsto\:(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)

\rm \:  =  \:(\alpha\beta - \alpha\gamma - \beta\gamma +  {\gamma}^{2})(\beta\alpha + \alpha\delta + \beta\delta +  {\delta}^{2} )

\rm \:  =  \:(\alpha\beta -[ \alpha +  \beta]\gamma +  {\gamma}^{2})(\beta\alpha + [\alpha + \beta]\delta +  {\delta}^{2} )

On substituting the values, we get

\rm \:  =  \:(1 + p\gamma +  {\gamma}^{2})(1 - p\delta +  {\delta}^{2})

\rm \:  =  \:( p\gamma  - q\gamma)( - q\delta- p\delta )

\red{\bigg \{ \because \:  {\gamma}^{2} + q\gamma + 1 = 0 \: and \:  {\delta}^{2}  + q\delta + 1 = 0 \bigg \}}

\rm \:  =  \: - \gamma(p - q)\delta(p + q)

\rm \:  =  \:\gamma\delta(q - p)(q + p)

\rm \:  =  \:1 \times ( {q}^{2}  -  {p}^{2} )

\rm \:  =  \: {q}^{2}  -  {p}^{2}

 \red{\rm \implies\:\boxed{ \sf{ \: (\alpha-\gamma)(\alpha+\delta)(\beta-\gamma)(\beta+\delta) =  {q}^{2} -  {p}^{2}  }}}

Similar questions