Math, asked by rohangupta0424, 1 month ago

\text{If } x=\sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}-1 } }, \ \text{find the value of } x-\dfrac{1}{x}

Answers

Answered by user0888
174

Topic

  • Irrational Numbers- Rationalization

It is a process of converting the denominator to a rational number.

  • Polynomials- Quadratic Equation

A quadratic equation has the highest degree of 2.

Solution

The following is the given value of x.

x=\sqrt{\dfrac{\sqrt{10}+1}{\sqrt{10} -1} }

\implies x=\sqrt{\dfrac{\sqrt{10}+1}{\sqrt{10} -1} }\times \sqrt{\dfrac{\sqrt{10}+1}{\sqrt{10} +1} }

\implies x=\sqrt{\dfrac{(\sqrt{10} +1)^{2} }{(\sqrt{10} )^{2} -1^{2} } }

\implies x=\sqrt{\dfrac{(\sqrt{10} +1)^{2} }{9} }

\implies x=\dfrac{\sqrt{10} +1}{3}

How do we derive a quadratic equation having x=\dfrac{\sqrt{10} +1}{3} as a solution? We can use squaring method to get the quadratic equation. So, the value of x satisfies the following.

\implies 3x-1=\sqrt{10}

\implies (3x-1)^{2} =(\sqrt{10} )^{2}

\implies 9x^{2}-6x+1=10

\implies 9x^{2}-6x-9=0

Dividing both sides by x, we get the following.

\implies 9x-6-\dfrac{9}{x} =0

\implies 9x-\dfrac{9}{x} =6

Let's divide both sides by 9, and here is the answer.

\therefore x-\dfrac{1}{x} =\dfrac{2}{3}

This is the required answer.

Answered by CutePrince7
144

Given that,

\qquad \bigstar \:\:\underline {\boxed {\pmb{\red{ \sf \:x\:=\: \sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}-1 } } \:\:}}}}\:\\\\

Need To Find : Value of x - 1 /x ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}-1 } } \:\\\\

\qquad \bigstar \:\:\underline {\pmb{\purple {\sf By \:Rationalizing \:the \:value \:of \:x \:\:\:}}}\\\\

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}-1 } } \:\\\\

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}-1 } }\:\;\times \:\sqrt{\dfrac{\sqrt{10}+1 }{\sqrt{10}+ 1 } } \:\\\\

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\big( \sqrt{10}+1 \big)^2  }{\big( \sqrt{10}\big)^2 -\big( 1 \big)^2 } }\:\; \:\\\\

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\big( \sqrt{10}+1 \big)^2  }{\big( 10 \big) -\big( 1 \big) } }\:\; \:\\\\

\qquad \dashrightarrow \sf \:x\:=\: \sqrt{\dfrac{\big( \sqrt{10}+1 \big)^2  }{ 9 } }\:\; \:\\\\

\qquad \dashrightarrow \sf \:x\:=\: \dfrac{ \sqrt{10}+1   }{ 3 } \:\; \:\\\\

\qquad \dashrightarrow \sf \:3x\:-\:1 \:=\:  \sqrt{10}\:\; \:\\\\

\qquad \bigstar \:\:\underline {\pmb{\purple {\sf By \: Squaring \:both \:side \:\:\:}}}\\\\

\qquad \dashrightarrow \sf \big(\:3x\:-\:1 \:\big)^2\:=\: \big( \sqrt{10}\:\big)^2\; \:\\\\

\qquad \dashrightarrow \sf \:\big(3x\big)^2\:-\:6x \:+\:1 \:=\:  10\:\; \:\\\\

\qquad \dashrightarrow \sf \:9x^2\:-\:6x \:+\:1 \:=\:  10\:\; \:\\\\

\qquad \dashrightarrow \sf \:9x^2\:-\:6x \:- \:9 \:=\:  0\:\; \:\\\\

\qquad \dashrightarrow \sf \:\dfrac{9x^2}{x}\:-\:\dfrac{6x}{x} \:- \:\dfrac{9}{x} \:=\:  \dfrac{0}{x}\:\; \:\\\\

\qquad \dashrightarrow \sf \:9x\:-\:6 \:- \dfrac{\:9}{x} \:=\:  0\:\; \:\\\\

\qquad \dashrightarrow \sf \:9x\: \:- \dfrac{\:9}{x} \:=\:  6\:\; \:\\\\

\qquad \dashrightarrow \sf \dfrac{\:9x\: \:- \dfrac{\:9}{x}}{9} \:=\:  \dfrac{6}{9}\:\; \:\\\\

\qquad \dashrightarrow \sf \:x\: \:- \dfrac{\:1}{x} \:=\:  \dfrac{2}{3}\:\; \:\\\\

\qquad \dashrightarrow \underline {\boxed {\purple {\pmb{\frak{  \:x\: \:- \dfrac{\:1}{x} \:=\:  \dfrac{2}{3}\:\; }}}}}\:\:\bigstar \\\\

\therefore \underline {\sf Hence,  \:\:The \:Value \:of \:x - 1/x \:is\:\pmb{\bf{ 2/3}}\:.}\\

Similar questions