Chemistry, asked by Ritik6363, 8 months ago

\text{\large{\red{\underline{Question:-}}}}

Consider a certain reaction A→ Products with,
k \:  = 2.0 \times  {10}^{ - 2}  \:  {s}^{ - 1}
Calculate the concentration of A remaining after 100 s, if the initial concentration of A is
 {1.0 \: mol \: L}^{ - 1}
Don't post irrelevant answers please !!​

Answers

Answered by Anonymous
105

\bf{\huge{\red{\underline{Answer:-}}}}

[A] = 0.135 M

\text{\large{\orange{\underline{Given:-}}}}

k \:  = 2.0 \:  \times  {10}^{ - 2} \:   {s}^{ - 1}

t \:  = 100s

[A] 0 \:  = 1.0 \: mol \:  {L}^{ - 1}  = 1.0M\:

\text{\large{\orange{\underline{Solution:-}}}}

\red{\underline{For\:the\:first\:order\:reaction,}}

t \:  =  \frac{2.303}{k} log( \frac{[A]0}{[A]} )  \:  \: or \:  \:  log( \frac{[A]0}{[A] } ) \: = \frac{k \times t}{2.303}

\red{log(\frac{[A]0}{[A]})} = {\red{\frac{(2.0\times{10}^{-2}{s}^{-1})(100\:s)}{2.303}}} = \red{\underline{0.8684}}

\red{\frac{[A]0}{[A]}} = Antilog 0.8684 = \red{\underline{7.3858}}

[A] = {\frac{[A0]}{7.3858}} = {\frac{[1M]}{7.3858}} = 0.135 M

\red{\underline\therefore{[A]=0.135\:M}}

Hence, the concentration of A remaining after 100 seconds is 0.135 M.

Answered by Anonymous
28

\bf{\huge{\red{\underline{Answer:-}}}}

[A] = 0.135 M

\text{\large{\orange{\underline{Given:-}}}}

k \:  = 2.0 \:  \times  {10}^{ - 2} \:   {s}^{ - 1}

t \:  = 100s

[A] 0 \:  = 1.0 \: mol \:  {L}^{ - 1}  = 1.0M\:

\text{\large{\orange{\underline{Solution:-}}}}

\red{\underline{For\:the\:first\:order\:reaction,}}

t \:  =  \frac{2.303}{k} log( \frac{[A]0}{[A]} )  \:  \: or \:  \:  log( \frac{[A]0}{[A] } ) \: = \frac{k \times t}{2.303}

\red{log(\frac{[A]0}{[A]})} = {\red{\frac{(2.0\times{10}^{-2}{s}^{-1})(100\:s)}{2.303}}} = \red{\underline{0.8684}}

\red{\frac{[A]0}{[A]}} = Antilog 0.8684 = \red{\underline{7.3858}}

[A] = {\frac{[A0]}{7.3858}} = {\frac{[1M]}{7.3858}} = 0.135 M

\red{\underline\therefore{[A]=0.135\:M}}

Hence, the concentration of A remaining after 100 seconds is 0.135 M.

Similar questions