Math, asked by Shubhendu8898, 1 year ago


\text{Show that}  \: sin^{p}\theta\cos^{q}\theta\;\;\text{is maximum, if} \\  \:  \: \theta=\tan^{-1}\sqrt{\frac{p}{q}}

Answers

Answered by anu24239
10

\huge\underline\mathfrak\blue{ANSWER}

y =  {sin}^{p}  \alpha . {cos}^{q}  \alpha  \\  \\  \frac{dy}{d \alpha }  =   - {sin}^{p}  \alpha .(q). {cos}^{q - 1} . \sin \alpha  + p. {sin}^{p - 1} . {cos}^{ q } . \cos \alpha  \\  \\ arrange \: the \: powers \: of \: sin \: and \\ cos \alpha  \\  \\  \frac{dy}{d \alpha }  =  - q. {sin}^{p + 1}  \alpha . {cos}^{q - 1}  \alpha  + p. {sin}^{p - 1}  \alpha . {cos}^{q + 1}  \alpha  \\  \\ for \: maximum \: value \:  \frac{dy}{dx}  = 0 \\  \\ q. {sin}^{p + 1}  \alpha . {cos}^{q - 1  }  \alpha  = p. {sin}^{p - 1}  \alpha . {cos}^{q + 1}  \alpha  \\  \\  \frac{ {sin}^{p + 1}  \alpha . {cos}^{q - 1} \alpha  }{ {sin}^{p - 1}  \alpha . {cos}^{q + 1}  \alpha }  =  \frac{p}{q}  \\  \\  \frac{  {sin}^{2}  \alpha  }{  {cos}^{2} \alpha   }  =  \frac{p}{q}  \\  \\  {tan}^{2}  \alpha  =  \frac{p}{q}  \\  \\  \tan \alpha  =   \sqrt{ \frac{p}{q} }  \\  \\  \alpha  =  {tan}^{ - 1}  \sqrt{ \frac{p}{q} }

  • LET THE GIVEN EQUATION EQUAL TO y
  • DIFFERENTIATE y WITH RESPECT TO GIVEN ANGLE. APPLY PRODUCT RULE
  • PUT THE GIVEN DERIVATIVE EQUAL. TO 0 TO FIND IT'S MAXIMUM VALUE AT PARTICULAR ANGLE.

ANSWER BY....

PURPLE WORLD

#BTSARMY

Answered by asritadevi2emailcom
96

 \alpha  =   {tan}^{ - 1}  \sqrt{ \frac{p}{q} }

Similar questions