Math, asked by Anonymous, 14 days ago


 \text {solve $ \displaystyle \sum \limits^{100}_{r = 1} \:  \: i {}^{2r + 1} $}

I found the answer but not confirm about the method. My answer was 0 please solve it using best method.

This is complex numbers​

Answers

Answered by anindyaadhikari13
14

\texttt{\textsf{\large{\underline{Solution}:}}}

Given To Evaluate:

 = \displaystyle \rm  \sum_{r = 1}^{100}  {i}^{2r + 1}

The sum will be equal to:

 \rm =  {i}^{3} +  {i}^{5} + ... +  {i}^{201}

Now consider the first two terms:

 \rm =  {i}^{3} +  {i}^{5}

 \rm =  {i}^{4 \times 0 + 3} +  {i}^{4 \times 1 + 1}

 \rm = - i+i

 \rm =0

Again, consider the next two terms:

 \rm =  {i}^{7} +  {i}^{9}

 \rm =  {i}^{4 \times 1 + 3} +  {i}^{4 \times 2 + 1}

 \rm = - i +i

 \rm =0

Now, this pattern will continue till the last term i.e.,

 \rm =  {i}^{199} +  {i}^{201}

 \rm =0

Therefore:

: \longmapsto \displaystyle \rm  \sum_{r = 1}^{100}  {i}^{2r + 1}  = 0

Which is our required answer.

\texttt{\textsf{\large{\underline{Additional Information}:}}}

\rm1.\  i^{4n} = 1

\rm2. \ i^{4n+1} = i

\rm3.\  i^{4n+2} = -1

\rm4.\ i^{4n+3} = -i


anindyaadhikari13: Thanks for the brainliest :)
Answered by Anonymous
8

To Solve :-

  \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}

Solution :-

In the given question, the concept of complex numbers is use. iota is a complex number which is equal to √-1 and i² = -1. iota raise to the power multiple of 4 is 1. We will use this concept to solve the given problem.

The expansion of given expression is given by,

 \longrightarrow \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  \: = ( {i}^{ {2(1) + 1}}) + ( {i}^{2(2) + 1} ) + ( {i}^{2(3) + 1} ) +( {i}^{2(4) + 1}) + ... + ( {i}^{2(99 ) + 1} ) + ( {i}^{2(100) + 1})

 \longrightarrow \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  \: = ( {i}^{ {2 + 1}}) + ( {i}^{{4 + 1}} ) + ( {i}^{6 + 1} ) +( {i}^{8 + 1})+  ... + ( {i}^{198 + 1} ) + ( {i}^{200 + 1})

 \longrightarrow \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  \: = ( {i}^{ {3}}) + ( {i}^{{5}} ) + ( {i}^{7} ) +( {i}^{9}) + ... + ( {i}^{199} ) + ( {i}^{201})

 \longrightarrow \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  \: = ( {i}^{ {2}}.i) + ( {i}^{{4}}.i ) + ( {i}^{4}. {i}^{2}.i  ) +( {i}^{8}.i)  +... + ( {i}^{196}.i^{2}.i  ) + ( {i}^{200}.i)

Now substitute,

  • iota raise to the power multiple of 4 = 1
  • iota raise to the power 2 = -1

 \longrightarrow \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  \: = ( - i) + (i ) + ( - i  ) +( i)+  ... + (  - i  ) + (i)

Now, we can examine a pattern involved which each term of the series , as -i + i - i + i +. . .- i + i.

All the iota terms will be cancelled out and the final answer will be 0.

Hence,

  \displaystyle \sum \limits^{100}_{r = 1} \: \: i {}^{2r + 1}  = 0

Your answer was correct :)

Similar questions