Physics, asked by kinzal, 6 hours ago

 \text{The Question : } \\

The Initial Phase Angle For Current  \sf I = 10 \sin \omega t+8 \cos \omega t, is

 \text{Option : } \\

1.  \tan^{-1} \bigg(\frac{4}{5}\bigg) \\

2.  \tan^{-1} \bigg( \frac{5}{3}\bigg) \\

3.  \sin^{-1} \bigg(\frac{4}{5}\bigg) \\

4.  \sf 90°

Answer Is (1)  \tan^{-1} \bigg(\frac{4}{5}\bigg) \\

Need Explanation ✔️ Please

Please Don't spam ❌

Answers

Answered by IamIronMan0
61

Answer:

1

Explanation:

First let simply a little

i = 10 \sin( \omega t)  + 8 \cos( \omega t)  \\  \\  =  \sqrt{10 {}^{2} +  {8}^{2}  }   \bigg\{ \frac{10}{ \sqrt{ {10}^{2} +  {8}^{2}  }  }  \sin( \omega t)  +  \frac{8}{ \sqrt{ {10}^{2}  +  {8}^{2} } }{ \cos \omega t} \bigg \}

Let

 \sin( \alpha )  =  \frac{8}{ \sqrt{164} }  \:  \: then \:  \:  \cos( \alpha )  =  \frac{10}{ \sqrt{164} }

So we get

i =    { \sqrt{164} } \{\cos( \alpha )  \sin( \omega t)  +  \sin( \alpha )  \cos(\omega t)  \} \\  \\ i =  { \sqrt{164} }  \sin(\omega t +  \alpha )

Clearly initial phase angle is alpha . Now

 \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \frac{8}{10}  =  \frac{4}{5}  \\  \\  \alpha  =  \tan {}^{ - 1} ( \frac{4}{5} )

Answered by ProximaNova
56

Explanation:

Revise the concept of SHM

This type of equation can be solved to give the desired values associated with it.

Suppose the equation is,

\rm y = asin\omega t + bcos\omega t

Now, let \rm a = Acos\phi ,\ b = Asin\phi

Now, the equation becomes as:

\rm :\longmapsto y = Acos\phi sin\omega t + A sin\phi cos\omega t

\rm :\longmapsto y = A(sin\omega t cos\phi + cos\omega t sin\phi )

\rm :\longmapsto y=Asin(\omega t + \phi )

Hence, we can deduce that A = amplitude and \phi = phase difference

Now dividing the equations of a, b:

\rm :\longmapsto \dfrac{b}{a} = \dfrac{Asin\phi}{Acos\phi}

\rm :\longmapsto \dfrac{b}{a} = tan\phi

\rm :\longmapsto \phi = tan^{-1}\dfrac{b}{a}

Hence we got the value of phase difference

Now considering the given equation in the question, we get

\rm :\longmapsto a = 10

\rm :\longmapsto b = 8

Hence phase angle is given by,

\rm :\longmapsto \phi = tan^{-1}\dfrac{b}{a}

\rm :\longmapsto \phi = tan^{-1}\dfrac{\cancel{8}^4}{\cancel{10}_5}

\boxed{\boxed{\rm :\longmapsto \phi = tan^{-1}\dfrac{4}{5}}}

\color{#FF7968}{\rule{36pt}{7pt}}\color{#4FB3F6}{\rule{36pt}{7pt}}\color{#FBBE2E}{\rule{36pt}{7pt}}\color{#60D399}{\rule{36pt}{7pt}}\color{#6D83F3}{\rule{36pt}{7pt}}

Similar questions