Answers
Answered by
2
LHS(After taking square)
then
(Since )
(Prooved)
Answered by
1
Answer:
cos theta ne chika isiliye sin theta ne usko pita..lol
Step-by-step explanation:
LHS(After taking square)
then
\frac{2(1+ sin\theta -cos\theta -sin\theta.cos\theta)}{2(1+ sin\theta +cos\theta +sin\theta.cos\theta}
2(1+sinθ+cosθ+sinθ.cosθ
2(1+sinθ−cosθ−sinθ.cosθ)
(Since sin^{2}\theta + cos^{2} \theta = 1sin
2
θ+cos
2
θ=1 )
\frac{(1+sin\theta ) -cos\theta(1+sin\theta)}{(1+sin\theta ) +cos\theta(1+sin\theta)}
(1+sinθ)+cosθ(1+sinθ)
(1+sinθ)−cosθ(1+sinθ)
\frac{(1+sin\theta)(1-cos\theta)}{(1+sin\theta)(1+cos\theta)}
(1+sinθ)(1+cosθ)
(1+sinθ)(1−cosθ)
\frac{1-cos\theta}{1+ cos\theta}
1+cosθ
1−cosθ
(Prooved)
CODING NHI HO PAYA THICK SEE (T_T)..XD
Similar questions