Math, asked by morankhiraj, 5 hours ago

\textbf{Prove the identity :}\  \textless \ br /\  \textgreater \ [tex] {\Large({\frac{1  \: +  \: sin \:  \theta   \: -   \: cos \:  \theta}{1  \: + \:  sin  \:  \theta   \: +  \: cos \:  \theta})}^{2} \:  =   \:  \frac{1 \:  - \:  cos  \: \theta}{1  \: + \:  cos \:  \theta} }

Answers

Answered by TYKE
10

Question :

 \sf ({\frac{1 \: + \: sin \: \theta \: - \: cos \: \theta}{1 \: + \: sin \: \theta \: + \: cos \: \theta})}^{2} \: = \: \frac{1 \: - \: cos \: \theta}{1 \: + \: cos \: \theta}

Solution :

 \sf ({\frac{1 \: + \: sin \: \theta \: - \: cos \: \theta}{1 \: + \: sin \: \theta \: + \: cos \: \theta})}^{2} \: = \: \frac{1 \: - \: cos \: \theta}{1 \: + \: cos \: \theta}

Let us assume

1 as a

sin∅ as b

cos ∅ as c

So for the numerator we can use the identity (a + b – c)²

which states (a + b – c)² = a² + b² + c² + 2(ab – bc – ca)

And for denominator we will apply (a + b + c)²

which states (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

 \sf  \frac{(a + b – c)² }{(a + b + c)²}  =  \frac{1 - c}{  1 + c}

 \sf  \frac{a² + b² + c² + 2(ab – bc – ca)}{a² + b² + c² + 2(ab + bc + ca)}  =  \frac{1 - c}{  1 + c}

 \sf  \frac{1² + sin²\theta + cos²\theta + 2(1×sin\theta - sin\theta × cos\theta - cos\theta×1)}{1² + sin²\theta + cos²\theta + 2(1×sin\theta + sin\theta × cos\theta + cos\theta×1)}  =  \frac{1 - cos\theta}{  1 + cos\theta}

Now we know that sin²∅ + cos²∅ = 1

so by applying that we get

 \sf  \frac{1 + 1+ 2(1×sin\theta - sin\theta × cos\theta - cos\theta×1)}{1+1 + 2(1×sin\theta + sin\theta × cos\theta + cos\theta×1)}  =  \frac{1 - cos\theta}{  1 + cos\theta}

 \sf  \frac{2+ 2(sin\theta - sin\theta  cos\theta - cos\theta)}{2+ 2(sin\theta + sin\theta  cos\theta + cos\theta)}  =  \frac{1 - cos\theta}{  1 + cos\theta}

 \sf  \frac{\cancel{4}(\cancel{sin\theta }- \cancel{sin\theta  cos\theta} - cos\theta)}{\cancel{4}(\cancel{sin\theta }+\cancel{sin\theta  cos\theta} + cos\theta)}  =  \frac{1 - cos\theta}{  1 + cos\theta}

 \frac{1 - cos\theta}{  1 + cos\theta} =  \frac{1 - cos\theta}{  1 + cos\theta}

Hence Proved !!

Answered by hariprasadsahu1979
2

Answer:

aponi akhomor pora hua ni ki

Similar questions