India Languages, asked by ANGELNIVI, 11 months ago

{\textbf{Subject : Mathematics}}

{\textbf{Chapter : Tangency}}


A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm. Find the radius of the circle.​

Answers

Answered by GhaintMunda45
15

Hey !

______________________________

ɢɪᴠᴇɴ : ᴘ ɪs ᴀ ᴘᴏɪɴᴛ ᴀᴛ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 16ᴄᴍ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏ. ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴛᴏ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 12 ᴄᴍ.

ɪᴛ ɪs ʀᴇǫᴜɪʀᴇᴅ ᴛᴏ ᴍᴇᴀsᴜʀᴇ ᴛʜᴇ ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.

ɴᴏᴡ, ∠ᴏᴛᴘ= 90°

( ∵ ᴀ ᴛᴀɴɢᴇɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ɪs ⊥ ᴛᴏ ᴛʜᴇ ʀᴀᴅɪᴜs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ᴘᴏɪɴᴛ ᴏғ ᴄᴏɴᴛᴀᴄᴛ).

∴ ɪɴ ʀɪɢʜᴛ ᴀɴɢʟᴇ ᴛʀɪᴀɴɢʟᴇ ᴏᴛᴘ,

ᴏᴘ² = ᴏᴛ²+ ᴛᴘ²

ᴏʀ, 16² = ᴏᴛ² + (12)²

ᴏʀ, 256-144 = ᴏᴛ²

ᴏʀ, 112 = ᴏᴛ²

∴ ᴏᴛ = 10.89 ᴄᴍ

ʜᴇɴᴄᴇ, ʀᴀᴅɪᴜs = 10.89 ᴄᴍ

______________________________

Thanks !

Answered by sujan2002
0

Answer:

Given:

length of tangent = 12cm

distance from centre to the external point p = 16cm

we know that if we join the centre of circle to the point of contact of tangent

it forms a "right angles triangle"

let O be the centre of circle

p is external point

Q be the point of contact of tangent

pqr \: is \: a \: right \: triangle \: right \: angled \: at \: q

 \sqrt{ {16}^{2}  - 12 ^{2} }  = radius

radius = 10.5

\small\boxed{\fcolorbox{blue}{white}{THEREFORE\:THE\:RADIUS\:OF\:CIRCLE\:IS\:10.5cm}}

<marquee behaviour= "alternate">PLEASE\:FOLLOW\: ME<marquee direction="down">

Similar questions