English, asked by Anonymous, 2 months ago


\  \textless \ br /\  \textgreater \ {\displaystyle {\int \cfrac{\sec^2x}{\cosec^2x}dx}}


Please solve this



Any of my friend is online​

Answers

Answered by usernametaken8
2

Answer:

tanx - x + c

Explanation:

Formulae used:

sec²x - tan²x = 1

∫sec²x dx = tanx + c

Solution:

sec²x / cosec² x = (1/cos² x)/ (1/ sin² x) = sin²x/cos²x

= tan² x = sec²x - 1

Therefore,

∫(sec²x - 1)dx = ∫sec²x dx - ∫dx = tanx - x + c

where, c is a constant

Answered by THEmultipleTHANKER
4

{\displaystyle{\int \dfrac{\sec^2x}{\cosec^2x}dx}}

{\displaystyle{\int \dfrac{\sin^2x}{\cos^2x}dx}}

{\displaystyle{\int {\tan^2x•dx}}}

{\displaystyle{\boxed{\left(1+\tan^2x=\sec^2x\right)}}}

{\displaystyle{\int (\sec^2x-1)dx}}

{\displaystyle{\int \sec^2x \int 1•dx}}

{\displaystyle{\tan x-x+c}}

Similar questions