Math, asked by umiko28, 9 months ago


\  \textless \ br /\  \textgreater \ \frac{d}{dx} \: cos \: (sin \:  x)\  \textless \ br /\  \textgreater \ find the derivative w.r to x​

Answers

Answered by Anonymous
1

Step-by-step explanation:

\frac{d}{dx}cos(sin \: x) \\  \\  =  - sin(sin \: x) \frac{d}{dx} (sin \: x) \\  \\  =  - sin(sin \: x)cos \: x \\  \\  =  - cos \: x \: sin(sin \: x)

Answered by Anonymous
0

Answer:

 \sf\  \implies:  - cos \: x \: sin(sin \: x) \:  \:  \ddot \smile

Step-by-step explanation:

correct question=

 \sf\huge{ \frac{d}{dx}cos(sin \: x)}

\sf\ \implies \:\frac{d}{dx}cos(sin \: x) \\  \\  \sf\  \implies:  - sin(sin \: x) \frac{d}{dx} (sin \: x) \\  \\ \sf\  \implies:  - sin(sin \: x)cos \: x \\  \\  \sf\  \implies:  - cos \: x \: sin(sin \: x) \:  \:  \ddot \smile

Similar questions