Math, asked by itzunknowngirl92, 1 month ago


\  \textless \ br /\  \textgreater \ \large{{\underline{\color{red}{\bf{✰✰question✰✰ }}}}}
\large{{\underline{\color{green}{\bf{find \: the \: general \: solution \: for \: each \: in \: the \: equation - }}}}}
➪ Cos 3x + Cosx - Cos 2x = 0

Answers

Answered by brainlyehsanul
56

Step-by-step explanation:

Solution :

(cos 3x + cos) – cos 2x = 0

_____________________

We know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cos \: x +  \cos \: y \:  =2  \cos \: ( \frac{x + y}{2} ) \cos \:  \frac{x - y}{2}

Replacing, x by 3x and y by x

_____________________

2 \cos \: ( \frac{3x + x}{2} ). \cos \: ( \frac{3x - x}{2} ) - \cos \: (2x) = 0

 =  > 2 \cos \: ( \frac{4x}{2} ). \cos \: ( \frac{2x}{2}  )-  \cos(2x)  = 0

 =  > 2 \cos(2x) . \cos(x)  -  \cos(2x)  = 0

 =  >  \cos \: 2x (2 \cos \: x - 1) = 0

Hence :

cos (2x) = 0

or

(2 cos x – 1) = 0

2 cos x = 1

cos x = ½.

We find general solutions of both separation,

General Solution for cos (2x) = 0

Given :

  • cos (2x) = 0

Thus,

  • general solution is

2x = (2n + 1) \frac{\pi}{2}

x = (2n + 1) \frac{\pi}{4}

  • Where n € z.

General Solution for cos x = ½

Let cos x = cos y. (1)

cos x = ½ (2)

From (3) and (4)

=> cos y = ½

=> cos y = cos π/3

=> cos y = π/3.

General Solution for cos x = cos y

=> x = 2nπ ± y

  • Where n € z

Putting y = π/3

=> x = 2nπ ± π/3

  • Where n € z.

Hence :

General solutions is For cos (2x) = 0, x (2n + 1)π/4.

Answered by hypo12
1

Step-by-step explanation:

\ \textless \ br /\ \textgreater \ \large{{\underline{\color{red}{\bf{✰✰question✰✰ }}}}}

\large{{\underline{\color{green}{\bf{find \: the \: general \: solution \: for \: each \: in \: the \: equation - }}}}}

➪ Cos 3x + Cosx - Cos 2x = 0

Similar questions