Math, asked by as3801504, 12 hours ago


\  \textless \ br /\  \textgreater \  \underline{ \boxed{\mathbb{\red{question}}}}  \\  \\ \tan( \alpha )  =  \frac{x \sin( \beta ) }{1 - x \cos( \beta ) } \: and \:  \\  \tan( \beta )   =  \frac{y \sin( \alpha ) }{1 - y \cos( \alpha ) }  \\ then \: the \: value \: of \:  \frac{x}{y} is \:
please give the correct answer

spammer do not answer

correct answer mark brainlist and get multiple thanks

All the best​

Answers

Answered by senboni123456
14

Answer:

Step-by-step explanation:

We have,

\tt{tan(\alpha)=\dfrac{x\,sin(\beta)}{1-x\,cos(\beta)}\,\,\,\,\,\,\,\,\,\,...(1)}\\\\\tt{tan(\beta)=\dfrac{y\,sin(\alpha)}{1-y\,cos(\alpha)}\,\,\,\,\,\,\,\,\,\,...(2)}

From (1), we get,

\tt{\dfrac{sin(\alpha)}{cos(\alpha)}=\dfrac{x\,sin(\beta)}{1-x\,cos(\beta)}}

\tt{\implies\,sin(\alpha)-x\,sin(\alpha)\,cos(\beta)=x\,sin(\beta)\,cos(\alpha)}

\tt{\implies\,sin(\alpha)=x\,sin(\beta)\,cos(\alpha)+x\,sin(\alpha)\,cos(\beta)}

\tt{\implies\,sin(\alpha)=x\left\{sin(\beta)\,cos(\alpha)+sin(\alpha)\,cos(\beta)\right\}}

\tt{\implies\,sin(\alpha)=x\,sin(\alpha+\beta)}

\tt{\implies\,x=\dfrac{sin(\alpha)}{sin(\alpha+\beta)}}

From (2), we get,

\tt{\dfrac{sin(\beta)}{cos(\beta)}=\dfrac{y\,sin(\alpha)}{1-y\,cos(\alpha)}}

\tt{\implies\,sin(\beta)-y\,cos(\alpha)\,sin(\beta)=y\,cos(\beta)\,sin(\alpha)}

\tt{\implies\,sin(\beta)=y\left\{cos(\beta)\,sin(\alpha)+cos(\alpha)\,sin(\beta)\right\}}

\tt{\implies\,sin(\beta)=y\,sin(\alpha+\beta)}

\tt{\implies\,y=\dfrac{sin(\beta)}{sin(\alpha+\beta)}}

So,

\tt{\dfrac{x}{y}=\dfrac{\dfrac{sin(\alpha)}{sin(\alpha+\beta)}}{\dfrac{sin(\beta)}{sin(\alpha+\beta)}}}

\tt{\implies\dfrac{x}{y}=\dfrac{sin(\alpha)}{sin(\beta)}}

Similar questions