Math, asked by muskanc918, 1 year ago


\  \textless \ font color="red"\  \textgreater \ \  \textless \ b\  \textgreater \ \  \textless \ i\  \textgreater \ ✨A pole has to be erected at a point on the boundary of a circular Park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed points A and B on the boundary is 7 metres.At what distances from the two gates should the pole be erected ?✨

Do Not Spam❎❎
No copied answer❎❎

Answers

Answered by muskan624
80

\huge{\bold{\underline{\underline{ANSWER:-}}}}<b><i>

The poles should be erected at the distances 12 metres and 5 metres from the gates.

\bold{\underline{\underline{Explanation:-}}}

\mathsf{Let\:P\:be\:the\:location\:of \:the\:pole\:on\:the}

\mathsf{circular\:boundary.\:Let \:the\:distance\:of\:the\:pole\:P\:from}

\mathsf{the\:gate\:A\:be\:x \:metres,i.e.,AP=x\:metres.}

\mathsf{As\:the\:difference\:of \:distances\:of\:the }

\mathsf{pole\:from\:the\:two \:gates = BP-AP}

\mathsf{(or\:AP-BP)is\:7 \:m, \:therefore, \:BP=(x+7)\:m.}

\mathsf{Given,AB=13\:m\:and\:AB\:is\:a\:diameter,}

\mathsf{\angle\:APB=90\degree......}

\mathsf{(angle\:in\:a\:semicircle\:is\:90\degree)}

\mathsf{In\:\triangle\:APB,\angle\:APB=90\degree.}

\mathsf{By\:Pythagoras\:theorem,\:we\:get}

\mathsf{{AP}^{2}  +  {BP}^{2}  =  {AB}^{2}}

\mathsf{\implies{x}^{2}  +  {(x + 7)}^{2}  =  {13}^{2}}

\mathsf{\implies{x}^{2}  +  {x}^{2}  + 14x + 49 = 169}

\mathsf{\implies{2x}^{2}  + 14x - 120 = 0}

\mathsf{\implies{x}^{2}  + 7x - 60 = 0}

\mathsf{\implies{x}^{2}  + 12x - 5x - 60 = 0}

\mathsf{\implies\:x(x + 12) - 5(x  + 12) = 0}

\mathsf{\implies(x + 12)(x - 5) = 0}

\mathsf{\implies(x + 12) = 0 \:  \:  \:or \:   \: \implies( x - 5) = 0}

\mathsf{\implies\:x =  - 12 \:  \:  \: or \:  \:  \: \implies\:x = 5}

\mathsf{But\:x\:being\:distance\:AP\:can't\:be\:negative.}

\mathsf{\implies\:x = 5\:is\:the\:correct\:answer}

\mathsf{Therefore,x=5\:and\:x+7=5+7=12}

<b><u>Hence, a pole can be erected on the boundary of the circular park at 5 m and 12 m from gates A and B or at 12 m and 5 m from gates A and B respectively.

Attachments:

AdorableAstronaut: Fab....❤
muskan624: thamks guys
muskan624: thanks**
muskan624: ❤❤❤❤
TheEmma: nyc sista
TheEmma: ☆☆☆☆☆ 5 star ans
anju2730: nice answer ❤
Answered by siddhartharao77
68

Step-by-step explanation:

Let the required position of the pole be P.

We have, AB = 13 cm, PB = x cm.

Angle in a semi-circle, ∠APB = 90°.

By Pythagoras theorem, we get

⇒ AB² = AP² + x²

⇒ 13² = AP² + x²   ------ (i)

Given that fixed points A and B on the boundary is 7 metres.

⇒ AP - x = 7 m       ------------ (ii)

On Squaring both sides, we get

⇒ (AP - x² = 7²

⇒ AP² + x² - 2 * AP * x = 49

⇒ 13² - 2 * AP * x = 49

⇒ AP * x = 60

⇒ AP = (60/x)      ----------------- (iii)

Substitute (iii) in (ii), we get

⇒ (60/PB) - PB =7

⇒ 60 - x² = 7x

⇒ x² + 7x - 60 = 0

⇒ x² + 12x - 5x - 60 = 0

⇒ x(x + 12) - 5(x + 12) = 0

⇒ (x - 5)(x + 12) = 0

⇒ x = 5, 12{Rejected}

⇒ x = 5

So, PB = x = 5 m.

AP = 7 + x = 12 m.

Poles can be erected at distances 5 m and 12 m from the gates.

Hope it helps!

Attachments:

muskan624: well answered bro!!❤❤
siddhartharao77: Thank you sis
JaishikaKumawat: great answer bro
JaishikaKumawat: ❤❤✌
siddhartharao77: Thank you sis
JaishikaKumawat: welcome bro
AdorableAstronaut: Wow!
AdorableAstronaut: @keka @ra
siddhartharao77: Thanks ra!
saivivek16: hehe
Similar questions