Math, asked by ratdna, 11 months ago

\textsf{Factorise:}\ \textbf{m(m - 1) - n(n - 1)}\\\\ \texttt{Note - Make sure to provide complete steps.}

Answers

Answered by rishu6845
47

Answer:

(m-n) (m+n-1)

Step-by-step explanation:

formula used----->

_____________

1. a^2-b^2=(a+b)(a-b)

m(m-1)-n(n-1)

2 2

=m - m - n + n

2 2

=(m - n) - m +n

=(m + n) (m-n) -1 (m-n)

=(m-n) (m+n-1)

Answered by BrainlyWriter
63

\Large\bold{\underline{\underline{Answer:-}}}

\bf\bold{\Rightarrow \:(m - n)(m+n-1) }

\rule{200}{4}

\bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}

\bf\bold{m(m-1)-n(n-1)}

\bf\bold{\Rightarrow \:m^2 - m-n^2+n}

By changing positions for applying formula

\bf\bold{\Rightarrow \:m^2 -n^2-m+n}

We know that \bf\bold{\: a^2 - b^2 = (a+b) (a-b) }

By using this concept

\bf\bold{\Rightarrow \:(m +n)(m-n) -m+n}

\bf\bold{\Rightarrow \:(m +n)(m-n) -(m-n) }

Taking Common (m-n)

\bf\bold{\Rightarrow \:(m - n)(m+n-1) }

Similar questions