Math, asked by Anonymous, 1 year ago

\textsf{Find derivative of}\:\:\frac{(2x-7)^{2}}{x^{4}}

Answers

Answered by Swarup1998
28
\boxed{\underline{\textsf{Question :}}}

\textsf{Find derivative of}\:\:\frac{(2x-7)^{2}}{x^{4}}\:\:\textsf{w. r. to x.}

\boxed{\underline{\textsf{Formulas :}}}

1.\:\frac{d}{dx}(uv)=u\frac{dv}{dx}+v\frac{du}{dx}

2.\:\frac{d}{dx}(\frac{u}{v})=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^{2}}

3.\:\frac{d}{dx}(x^{n})=n\:x^{n-1}

\boxed{\underline{\textsf{Solution :}}}

\boxed{\boxed{\textsf{Method 1 :}}\:\boxed{\textsf{Using multiplication}}}

\textsf{Let us take}\:p=\frac{(2x-7)^{2}}{x^{4}}

\implies p=(2x-7)^{2}x^{-4}

\textsf{Differentiating w. r. to x, we get}

\frac{dp}{dx}=\frac{d}{dx}\{(2x-7)^{2}x^{-4}

=(2x-7)^{2}\frac{d}{dx}(x^{-4})

+x^{-4}\frac{d}{dx}(2x-7)^{2}

=\{(2x-7)^{2}(-4)x^{-4-1}\}

+\{2x^{-4}(2x-7)^{2-1}\frac{d}{dx}(2x-7)\}

=-4(2x-7)^{2}x^{-5}+4(2x-7)x^{-4}

=4(2x-7)x^{-4}\{-(2x-7)x^{-1}+1\}

=4(2x-7)x^{-4}(\frac{-2x+7+x}{x})

=\frac{4(2x-7)(7-x)x^{-4}}{x}

=\frac{4(2x-7)(7-x)}{x^{5}}

\to \boxed{\small{\frac{d}{dx}\frac{(2x-7)^{2}}{x^{4}}=\frac{4(2x-7)(7-x)}{x^{5}}}}

\boxed{\boxed{\textsf{Method 2 :}}\:\boxed{\textsf{Using division}}}

\textsf{Let us take}\:q=\frac{(2x-7)^{2}}{x^{4}}

\textsf{Differentiating w. r. to x, we get}

\frac{dq}{dx}=\frac{d}{dx}\frac{(2x-7)^{2}}{x^{4}}

=\frac{x^{4}\frac{d}{dx}(2x-7)^{2}-(2x-7)^{2}\frac{d}{dx}(x^{4})}{(x^{4})^{2}}

=\frac{\{2*2*x^{4}*(2x-7)\}-\{(2x-7)^{2}*4*x^{3}\}}{x^{8}}

=\frac{4(2x-7)x^{4}-4(2x-7)^{2}x^{3}}{x^{8}}

=\frac{4(2x-7)x^{3}\{x-(2x-7)\}}{x^{8}}

=\frac{4(2x-7)(7-x)}{x^{5}}

\to \boxed{\small{\frac{d}{dx}\frac{(2x-7)^{2}}{x^{4}}=\frac{4(2x-7)(7-x)}{x^{5}}}}

\boxed{\boxed{\textsf{Method 3 :}}\:\boxed{\textsf{Normal calculations}}}

\textsf{Now,}\:\:\frac{d}{dx} \frac{(2x-7)^{2}}{x^{4}}

=\frac{d}{dx}\frac{4x^{2}-28x+49}{x^{4}}

=\frac{d}{dx}(4x^{-2}-28x^{-3}+49x^{-4})

=\small{4\frac{d}{dx}(x^{-2})-28\frac{d}{dx}(x^{-3})+49\frac{d}{dx}(x^{-4})}

=-8x^{-3}+81x^{-4}-196x^{-5}

\to \boxed{\tiny{\bold{\frac{d}{dx} \frac{(2x-7)^{2}}{x^{4}}=-8x^{-3}+81x^{-4}-196x^{-5}}}}
Answered by brunoconti
3

Answer:

Step-by-step explanation:

Attachments:

Swarup1998: please cut the photo to show the answer only
Similar questions