Math, asked by BIGBANG1234, 1 year ago


\textsf{Happy Diwali Friends !!!}

\textsf {Answer the above question}

\textsf {No Spam Answers}

Attachments:

Answers

Answered by Anonymous
29
\underline{\underline{\Large{\mathfrak{Solution : }}}}



\underline{\textsf{To Find : }}



\sf = \: \dfrac{1}{log_3 \: e } \: + \: \dfrac{1}{log_3 \: e^2} \: + \: \dfrac{1}{log_3 \: e^4} \: + \: .....<br />



\textsf{Using Logarithm Rule : } \\ \\<br /><br />\boxed{\underline{\mathsf{ \implies log_{a} \: b^c \: = \: c \: log_a \: b }}}<br />



\sf = \: \dfrac{1}{log_3 \: e } \: + \: \dfrac{1}{2 \: log_3 \: e} \: + \: \dfrac{1}{4 \: log_3 \: e} \: + \: .....<br />



\sf Take \: out \: \: \dfrac{1}{log_3 \: e} \: \: as \: common \: factor .



\sf = \: \dfrac{1}{log_3 \: e } \underbrace{\Bigg( 1 \: + \: \dfrac{1}{2} \: + \: \dfrac{1}{4} \: + ..... \Bigg) } \\ \textsf{ \: \: \: \: \: \: \: This Part forms an infinte G.P.}



\textsf{Where, } \\ \\<br /><br />\mathsf{\implies First \: term (a) \: = \: 1 } \\ \\ \\<br /><br />\mathsf{\implies Common \: ratio(r) \: = \: \dfrac{\dfrac{1}{2}}{ \: \: \: \: 1 \: \: \: \: } \: = \: \dfrac{1}{2} }<br />



\underline{\textsf{Using Formula :}} \\ \\<br /><br />\mathsf{\implies Sum \: of \: infinite \: G.P. \: = \: \dfrac{a}{1 \: - \: r}}



\sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{1}{1 \: - \: \dfrac{1}{2}} \right) \\ \\ \\ \sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{1}{\dfrac{2 \: - \: 1}{2}} \right)



\sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{ \: \: \: \: 1 \: \: \: \: }{\dfrac{1}{2}} \right)



\sf = \: \dfrac{1}{log_3 \: e}\left( 1 \: \div \: \dfrac{1}{2} \right) \\ \\ \\ \sf = \: \dfrac{1}{log_3 \: e}\left( 1 \: \times \: 2\right)



\sf = \: \dfrac{2}{log_3 \: e} \\ \\ \\ \sf = \: \dfrac{2 \: (log_3 \: 3)}{log_3 \: e} \qquad \quad \boxed{ \mathsf{\implies log_3 \: 3 \: = \: 1} }<br />



\sf = \: \dfrac{ \: \: \: log_3 \: 3^2 \: \: \: }{log_3 \: e} \\ \\ \\ \sf = \: \dfrac{ \: \: \: log_3 \: 9 \: \: \: }{log_3 \: e} <br />



\textsf{Using Logarithm Rule : } \\ \\<br /><br />\boxed{\underline{\mathsf{ \implies \dfrac{ \: \: \: log_{a} \: b \: \: \: }{ log_{a} \: c } \: = \: log_{c} \: b }}}<br />



\sf = \: log_e \: 9



\underline{\underline{\textsf{The correct option is (A). }}}
Answered by IITGENIUS1234
3

Solution:

\underline{\textsf{To Find : }}

To Find :

\sf = \: \dfrac{1}{log_3 \: e } \: + \: \dfrac{1}{log_3 \: e^2} \: + \: \dfrac{1}{log_3 \: e^4} \: + \: .....=

log

3

e

1

+

log

3

e

2

1

+

log

3

e

4

1

+.....

\begin{lgathered}\textsf{Using Logarithm Rule : } \\ \\ \boxed{\underline{\mathsf{ \implies log_{a} \: b^c \: = \: c \: log_a \: b }}}\end{lgathered}

Using Logarithm Rule :

⟹log

a

b

c

=clog

a

b

\sf = \: \dfrac{1}{log_3 \: e } \: + \: \dfrac{1}{2 \: log_3 \: e} \: + \: \dfrac{1}{4 \: log_3 \: e} \: + \: .....=

log

3

e

1

+

2log

3

e

1

+

4log

3

e

1

+.....

\sf Take \: out \: \: \dfrac{1}{log_3 \: e} \: \: as \: common \: factor .Takeout

log

3

e

1

ascommonfactor.

\begin{lgathered}\sf = \: \dfrac{1}{log_3 \: e } \underbrace{\Bigg( 1 \: + \: \dfrac{1}{2} \: + \: \dfrac{1}{4} \: + ..... \Bigg) } \\ \textsf{ \: \: \: \: \: \: \: This Part forms an infinte G.P.}\end{lgathered}

=

log

3

e

1

(1+

2

1

+

4

1

+.....)

This Part forms an infinte G.P.

\begin{lgathered}\textsf{Where, } \\ \\ \mathsf{\implies First \: term (a) \: = \: 1 } \\ \\ \\ \mathsf{\implies Common \: ratio(r) \: = \: \dfrac{\dfrac{1}{2}}{ \: \: \: \: 1 \: \: \: \: } \: = \: \dfrac{1}{2} }\end{lgathered}

Where,

⟹Firstterm(a)=1

⟹Commonratio(r)=

1

2

1

=

2

1

\begin{lgathered}\underline{\textsf{Using Formula :}} \\ \\ \mathsf{\implies Sum \: of \: infinite \: G.P. \: = \: \dfrac{a}{1 \: - \: r}}\end{lgathered}

Using Formula :

⟹SumofinfiniteG.P.=

1−r

a

\begin{lgathered}\sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{1}{1 \: - \: \dfrac{1}{2}} \right) \\ \\ \\ \sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{1}{\dfrac{2 \: - \: 1}{2}} \right)\end{lgathered}

=

log

3

e

1

1−

2

1

1

=

log

3

e

1

2

2−1

1

\sf = \: \dfrac{1}{log_3 \: e} \left( \dfrac{ \: \: \: \: 1 \: \: \: \: }{\dfrac{1}{2}} \right)=

log

3

e

1

2

1

1

\begin{lgathered}\sf = \: \dfrac{1}{log_3 \: e}\left( 1 \: \div \: \dfrac{1}{2} \right) \\ \\ \\ \sf = \: \dfrac{1}{log_3 \: e}\left( 1 \: \times \: 2\right)\end{lgathered}

=

log

3

e

1

(1÷

2

1

)

=

log

3

e

1

(1×2)

\begin{lgathered}\sf = \: \dfrac{2}{log_3 \: e} \\ \\ \\ \sf = \: \dfrac{2 \: (log_3 \: 3)}{log_3 \: e} \qquad \quad \boxed{ \mathsf{\implies log_3 \: 3 \: = \: 1} }\end{lgathered}

=

log

3

e

2

=

log

3

e

2(log

3

3)

⟹log

3

3=1

\begin{lgathered}\sf = \: \dfrac{ \: \: \: log_3 \: 3^2 \: \: \: }{log_3 \: e} \\ \\ \\ \sf = \: \dfrac{ \: \: \: log_3 \: 9 \: \: \: }{log_3 \: e}\end{lgathered}

=

log

3

e

log

3

3

2

=

log

3

e

log

3

9

\begin{lgathered}\textsf{Using Logarithm Rule : } \\ \\ \boxed{\underline{\mathsf{ \implies \dfrac{ \: \: \: log_{a} \: b \: \: \: }{ log_{a} \: c } \: = \: log_{c} \: b }}}\end{lgathered}

Using Logarithm Rule :

log

a

c

log

a

b

=log

c

b

\sf = \: log_e \: 9=log

e

9

\underline{\underline{\textsf{The correct option is (A). }}}

The correct option is (A).

Similar questions