Answers
Solution :-
As given :-
x₁ ,x₂ ,x₃ ,.....x₂₀₁₄ are real positive number such that
Then we have to find out the value of minimum K such that
Now let us suppose that
Then by solving further :-
Now the value of :-
And By using AM-HM inequality
So we can say that the minimum value of
Now the minimum sum of
So when n = 2014
So the minimum value of K for which
Answer:
,x₂ ,x₃ ,.....x₂₀₁₄ are real positive number such that
\sum\limits^{2014}_{j=1} x_j = 1
j=1
∑
2014
x
j
=1
Then we have to find out the value of minimum K such that
K \sum\limits^{2014}_{j=1} \dfrac{x^2_j }{1-x_j} \geq 1K
j=1
∑
2014
1−x
j
x
j
2
≥1
Now let us suppose that
\sum\limits^{n}_{j=1} x_j = 1
j=1
∑
n
x
j
=1
Then by solving further :-
\sum\limits^{n}_{j=1} \dfrac{x^2_j }{1-x_j}
j=1
∑
n
1−x
j
x
j
2
= \sum\limits^{n}_{j=1} \dfrac{x^2_j - 1}{1-x_j} + \sum\limits^{n}_{j=1} \dfrac{1}{1-x_j}=
j=1
∑
n
1−x
j
x
j
2
−1
+
j=1
∑
n
1−x
j
1
= \sum\limits^{n}_{j=1} \dfrac{(x_j + 1)(x_j -1)}{-(x_j -1)} + \sum\limits^{n}_{j=1} \dfrac{1}{1-x_j}=
j=1
∑
n
−(x
j
−1)
(x
j
+1)(x
j
−1)
+
j=1
∑
n
1−x
j
1
= \sum\limits^{n}_{j=1} \dfrac{(x_j + 1)\cancel{(x_j -1)}}{-\cancel{(x_j -1)}} + \sum\limits^{n}_{j=1} \dfrac{1}{1-x_j}=
j=1
∑
n
−
(x
j
−1)
(x
j
+1)
(x
j
−1)
+
j=1
∑
n
1−x
j
1
= \sum\limits^{n}_{j=1} -(x_j + 1) + \sum\limits^{n}_{j=1} \dfrac{1}{1-x_j}=
j=1
∑
n
−(x
j
+1)+
j=1
∑
n
1−x
j
1
Now the value of :-
\sum\limits^{n}_{j=1} -(x_j + 1) = -(n +1)
j=1
∑
n
−(x
j
+1)=−(n+1)
And By using AM-HM inequality
\begin{lgathered}\sum\limits^{n}_{j=1} \dfrac{1}{1-x_j} \\ \\= \sum\limits^{n}_{j=1} \dfrac{\dfrac{1}{1-x_j}}{n} \geq \dfrac{n}{\sum\limit