Math, asked by Arceus02, 8 months ago

\textsf{\scriptsize{a, b, c, d, e are real numbers such that :-}}
\quad \quad \bullet \sf{a + b + c + d + e = 8, \: and}
\quad \quad \bullet \sf{{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2} + {e}^{2} = 16}
\textsf{What is the largest possible value of e?}

Answers

Answered by EnchantedGirl
29

\bf \red{\underline{\underline{Given:-}}}

\\

\tt \bullet {a, b, c, d, e \ are \  real \ numbers}

 \bullet \tt{a + b + c + d + e = 8, \: and}

 \bullet \tt{{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2} + {e}^{2} = 16}

\\

\bf \orange{\underline{To \ Find:-}}

\\

  • The largest possible value of e.

\\

\bf \purple{\underline{Solution:-}}

\\

We know,

\tt From \ tchebycheff's \ inequality \ :

\\

 \\  \\  \implies \tt ( \frac{a + b + c + d}{4} ) {}^{2}  \leqslant  \frac{ {a}^{2}  +  {b}^{2} +  {c}^{2}  +  {d}^{2}  }{4}  \\  \\

\\

And given that ,

\quad \quad \bullet \tt{a + b + c + d + e = 8, \: and}

\quad \quad \bullet \tt{{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2} + {e}^{2} = 16}

\\

\tt Now,\ substituting \ these\  values \ in\  the\  above \ equation,\ we \ get \ :

\\

 \\  \implies \tt \: ( \frac{8 -  {e}^{2} }{4} ) {}^{2}  \leqslant  \frac{16 -  {e}^{2} }{4}  \\  \\

 \\  \\  \implies \tt \: 64 +  {e}^{2}  - 16e \:  \leqslant 4(16 -  {e}^{2} ) \\  \\  \\  \implies \tt \: 5 {e}^{2}  - 16e \leqslant 0 \\  \\  \\  \implies \tt \: e(5e - 16) \leqslant 0 \\  \\  \\  \implies \tt 0 \leqslant e \leqslant  \frac{16}{5}  \\  \\  \\

\\

Therefore,

\\

\implies  \tt The \ Range \ of \ e \: \in \: [0,16/5].

\\

\tt Hence, \: the\: largest \: possible\:value\: of \: e\: is\: :

\\

❥\boxed{\pink{16/5}}

\\

____________________________________

Similar questions