Math, asked by Anonymous, 1 year ago

\textsf{ Solve this inequality : }


 \sf \implies 12k^{2} \: + \: 4k \: - \: 8 \: \geq \: 0

Answers

Answered by NainaMehra
14
Hey!!


 \sf \implies 12k^{2} \: + \: 4k \: - \: 8 \: \geq \: 0


Divide both sides of the inequality by 4


 \sf \implies 3k^{2} \: + \: k \: - \: 2 \: \geq \: 0


Write k as a difference

 \sf \implies 3k^{2} \: + \: 3k \:  - \: 2k \: - \: 2 \: \geq \: 0


 =  > 3k(k + 1) - 2(k + 1) \geq0 \\  \\  =  > (k + 1)(3k - 2) \geq0 \\  \\  =  > k + 1 \geq0 \:  \: or \:  \: 3k - 2 \geq0  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \\  \\ =  > k + 1 \leq0 \:  \: or \:  \:   3k - 2 \leq0 \\  \\ solve \:  \: the \:  \: inequality \:  \: for \:  \: k \\  \\  =  > k   \geq - 1 \:  \: or \:  \: 3k - 2 \geq0 \\  \\ or \:  \:  \:  \\  \\  =  > k + 1 \leq0 \:  \: or \:  \: 3k + 2 \leq0


 =  > k \geq - 1 \:  \: or \:  \: k \geq \frac{2}{3}  \\  \\or \\  \\   =  > k \leq - 1 \:  \: or \:  \: k \leq \frac{2}{3}

Find the intersection



See in the attachment ⬆⬆⬆






Hope it helps!
Attachments:

Anonymous: Thanks a lot !!
NainaMehra: Welcome:-)
Answered by LitChori01
5

view the attachments.

Attachments:
Similar questions