Math, asked by lamOrange, 1 month ago

⠀⠀⠀
{\textsf{\textbf{Question\::}}}
⠀⠀⠀⠀
\tt{\dfrac{x+3}{x-2}-\dfrac{1-x}{x}=4\dfrac{1}{4}}

Attachments:

Answers

Answered by apm43
1

Answer:

Hope my answer will help you

Attachments:
Answered by Anonymous
37

\large{\underline{\underline{\pmb{\frak{ Given :- }}}}}

\sf \dashrightarrow \dfrac{x+3}{x-2} - \dfrac{1-x}{x} = 4 \dfrac{1}{4}  

\large{\underline{\underline{\pmb{\frak{ Solution :- }}}}}

\sf \dashrightarrow \dfrac{x+3}{x-2} - \dfrac{1-x}{x} = 4 \dfrac{1}{4}

\sf \dashrightarrow \dfrac{x+3}{x-2} - \dfrac{1-x}{x} = \dfrac{17}{4}

~Here, LCM of denominators of fractions of this equation is 4x( x - 2 ) . So, we’ll multiply it on both sides of the equation.  

\sf \dashrightarrow 4x( x + 3 ) - ( 4x -8)(1-x) = 17x(x-2)

\sf \dashrightarrow (4x^{2} + 12x) -(12x-4x^{2} -8) = 17x^{2} -34x

\sf \dashrightarrow 4x^{2} +12x -12x+4x^{2}+8 = 17x^{2} -34x

\sf \dashrightarrow 8x^{2}+8 = 17x^{2}-34x

\sf \dashrightarrow ( 8x^{2} -17x^{2} ) + 8 = -34x

\sf \dashrightarrow -9x^{2} + 8x +34x = 0

\sf \dashrightarrow -9x^{2} +36x-2x+8 = 0

\sf \dashrightarrow 9x( -x+4) +2(-x+4) = 0

\sf \dashrightarrow (-x+4)(9x+2) = 0

Solving first bracket :

\sf \leadsto ( -x+4 ) = 0

\sf \leadsto -x = -4

\bigstar \: \underline{\boxed{\bf{x=4}}}

Solving second bracket :

\sf \leadsto (9x+2) = 0

\sf \leadsto 9x = -2

\bigstar \: \underline{\boxed{\bf{ x = \dfrac{-2}{9}}}}

Hence,  

  • Value of x can be 4 or -2/9

Similar questions