Math, asked by duragpalsingh, 1 year ago

\textsf{The value of expression }\\\\ \displaystyle \sqrt{\dfrac{1}{\sqrt{2} + \sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...........\sf upto \ 99 \ terms} \\\\\textsf{is equal to:}\\\\A)9\\B)3\\C)1\\D)0\\\\\textsf{Explain step by step!}

Answers

Answered by Anonymous
68

Answer:

→B = 3.

Step-by-step explanation:

We have,

 \because  \sf  \sqrt{\dfrac{1}{\sqrt{2} + \sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...........\sf upto \ 99 \ terms} \\  \\ \sf  =  \sqrt{ \frac{1}{ \sqrt{2}   +  \sqrt{1} } \times  \frac{ \sqrt{2}  -  \sqrt{1} }{ \sqrt{2} -  \sqrt{1}  }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  } + ........ +   \frac{1}{ \sqrt{100} +  \sqrt{99}  }    \times  \frac{ \sqrt{100}  -  \sqrt{99} }{ \sqrt{100}  -  \sqrt{99} } } . \\  \\  \sf  =  \sqrt{ \frac{ \sqrt{2} - 1 }{2 - 1} +  \frac{ \sqrt{3}  -  \sqrt{2} }{3 - 2} + ......   +  \frac{10 -  \sqrt{99} }{100 - 99}   } . \\  \\  \sf =   \sqrt{  \cancel{\sqrt{2}}  - 1 +   \cancel{\sqrt{3}}  -   \cancel{\sqrt{2}} +   \cancel{\sqrt{4}}   -   \cancel{\sqrt{3}} + .....10 -   \cancel{\sqrt{99} } } . \\  \\  =  \sf \sqrt{ - 1 + 10} . \\  \\  \sf =  \sqrt{9} . \\  \\  \huge \pink{ \boxed{ \boxed{ \it = 3.}}}

Correct option :- B) 3 .

Hence, it is solved.

Answered by Blaezii
41

\mathfrak{\large{\underline{\underline{Answer:-}}}}

Option => B

The value of that expression is 3.

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Solution :

Given expression :

\sf \sqrt{\dfrac{1}{\sqrt{2} + \sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...........\sf upto\;99\;terms...}

So ,

\sf \sqrt{\dfrac{1}{\sqrt{2}+\sqrt{1}}\;\times\dfrac{\sqrt{2} -\sqrt{1}}{\sqrt{2} -\sqrt{1}}\;+\dfrac{1}{\sqrt{3}+\sqrt{2}}\;\times\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}+.......+\dfrac{\sqrt{1}}{\sqrt{100} +\sqrt{99}}\times\dfrac{\sqrt{100}-\sqrt{99}}{\sqrt{100}-\sqrt{99}}}

\sf= \sqrt{ \frac{ \sqrt{2} - 1 }{2 - 1} + \frac{ \sqrt{3} -\sqrt{2} }{3 - 2} + ......+\dfrac{10 - \sqrt{99} }{100 - 99}}

Hence ,

\sf = \sqrt{\cancel{\sqrt{2}} -1 + \cancel{\sqrt{3}} - \cancel{\sqrt{2}} +\cancel{\sqrt{4}}- \cancel{\sqrt{3}}+..10 \cancel{\sqrt{99}}}

\sf \sqrt{-1 + 10}

\sf =\sqrt{9}=3

Hence,

Correct Option => B = 3.

Similar questions