Math, asked by somethingnew, 1 year ago


the \: area \: of \: a \: rectangular \: carpet \: is \: 120 {m}^{2} and \: its \: perimeter \: is \: 46m \: the \: length \: of \: its \: diagonal \: is

Answers

Answered by BEJOICE
1

let \:  \: carpet \:  \: length \:  \: be \:  \: x \:  \: and \\ breadth \:  \: be \:  \: y \\ area \:  \: xy = 120 -  -  - (1) \\ perimeter \:  \: 2(x + y) = 46 \\ x + y = 23 \:  \:  \: substituting \:  \: from \:  \: (1) \\ x +  \frac{120}{x}  = 23 \\  {x}^{2}  - 23x + 120 = 0 \\ (x - 8)(x - 15) = 0 \\ x = 8 \:  \: or \:  \: 15 \\ y = 23 - x = 15 \:  \: or \:  \: 8 \\ since \:  \: x \:  \: is \:  \: length  \:  \: it \:  \: should \: be \:  \: larger \\ so \:  \: x = 15 \:  \: and \:  \: y = 8 \\ diagonal =  \sqrt{ {x}^{2}  +  {y}^{2} }  \\  =  \sqrt{ {15}^{2}  +  \sqrt{ {8}^{2} } }  = 17 \:  \: m
Similar questions