Math, asked by rutuk2353, 1 day ago


the \: base \: of \: an \: isosceles \: triangle \: is \:  \frac{4}{3} cm.the \: perimeter \: of \: the \: triangle \: is \: 4 \times \frac{2}{15} cm.what \: is \: the \: length \: of \: either \: of \: the \: remaining \: equal \: sides
Answer the question with full explanation.Don't spam​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Let assume that the required isosceles triangle be ABC such that AB = AC and base is BC.

Let assume that AB = AC = x cm

Now, given that

\rm \: Base\:of\:\triangle ABC, \: BC =  \frac{4}{3}  \: cm \\

Further, given that

\rm \: Perimeter\:of\:\triangle ABC \:  = 4 \frac{2}{15}  \: cm \\

\rm \: Perimeter\:of\:\triangle ABC \:  = \frac{15 \times 4 + 2}{15}  \: cm \\

\rm \: Perimeter\:of\:\triangle ABC \:  = \frac{60 + 2}{15}  \: cm \\

\rm \: Perimeter\:of\:\triangle ABC \:  = \frac{62}{15}  \: cm \\

We know,

Perimeter of a triangle is defined as sum of its three sides.

So,

\rm \: AB + AC + BC \:  = \frac{62}{15}  \:  \\

\rm \: x + x +  \frac{4}{3} =  \frac{62}{15}  \:  \\

\rm \: 2x+  \frac{4}{3} =  \frac{62}{15}  \:  \\

\rm \: 2x =  \frac{62}{15}  -  \frac{4}{3}  \:  \\

\rm \: 2x =  \frac{62 - 20}{15} \:  \\

\rm \: 2x =  \frac{42}{15} \:  \\

\rm \: 2x =  \frac{14}{5} \:  \\

\rm\implies \:\rm \: x =  \frac{7}{5} \: cm \:  \\

So,

\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\sf{AB =  \dfrac{7}{5}  \: cm} \\  \\ &\sf{AC =  \dfrac{7}{5}  \: cm} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Answered by kvalli8519
12

Refer the given attachment

Attachments:
Similar questions