Math, asked by Anonymous, 11 months ago


the \: difference \: between \: areas \\ of \: two \: circles \: is \: 462 \: sq \: units \\ and \: the \: sum \: of \: their \:  \\ circumferences \: is \: 132 \: sq \: units \\ find \: the \: radius \: of \: each \: circle

Answers

Answered by CharmingPrince
11

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

The \: difference \: between \: areas \: of \: two \\ circles \: is \: 462 \: sq \: units \: and \: the \: sum \: of \\ their \: circumferences \: is \: 132 \: units. \: Find \\ the \: radius \: of \: each \: circle

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

Let the radius are r_1and r_2

\boxed{\red{\bold{Given \ area \ relation:}}}

\purple{\implies \pi r_1 ^2 - \pi r_2 ^2 = 462}

\purple{\implies}\pi(r_1 ^2 -r_2 ^2) = 462

\purple{\implies}r_1 ^2 - r_2 ^2 = \displaystyle \frac{462}{\pi}

\purple{\implies}(r_1 +r_2)(r_1 - r_2) = 462 \times \displaystyle \frac{7}{22}

\purple{\implies}(r_1 + r_2)(r_1 - r_2) = 147 \; \; \; -(i)

\boxed{\red{\bold{Given \ circumference \ relation:}}}

\red{\implies}\blue{ 2 \pi r_1 + 2 \pi r_2 = 132}

\red{\implies}2 \pi ( r_1 + r_2)= 132

\red{\implies}r_1 + r_2 = \displaystyle \frac{132}{2 \pi}

\red{\implies}r_1 + r_2 = \displaystyle \frac{66}{\pi}

\red{\implies}r_1 + r_2 = 66 \times \displaystyle \frac{7}{22}

\red{\implies}r_1 + r_2 = 21 \; \; \; -(ii)

\boxed{\red{\bold{Putting \ r_1 + r_2 = 21 \ in \  (i):}}}

\blue{\implies}21(r_1 - r_2) = 147

\blue{\implies}r_1 -r_2 = 7 \; \; \; -(iii)

\boxed{\red{\bold{Adding\ (ii) \ , \ (iii):}}}

\green{\implies r_1 + r_2 + r_1 - r_2 = 21 + 7}

\green{\implies}2r_1 = 28

\green{\boxed{\implies{\boxed{r_1 = 14}}}}

\green{\boxed{\implies{\boxed{r_2 = 21 - r_1 = 21 - 7 = 14}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by jayasreee
1

Answer:

hi bro

TS RR AP...................

Similar questions