Physics, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 3 months ago


The  \: figure \:  shows \\   \: a \: cube  \: of  \: each  \: side \\  \:  15 cm  \: immersed \:  in  \: a  \\  \: tube  \: containing \:  water \\ \:  of  \: density  \: 10 {}^{3} kg \: m {}^{ - 3} .
Calculate : \\ \  \textless \ br /\  \textgreater \ (i)  \: the  \: pressure \:  at  \: the  \: top \:  of  \: cube,  \\ \  \textless \ br /\  \textgreater \ (ii) \:  the \:  pressure \:  at  \: the  \: bottom  \: of  \: cube,  \\ \  \textless \ br /\  \textgreater \ (iii) \:  the \:  resultant \:  thrust  \: on \:  cube. \\ (iv) \: the \: resultant \: thrust \: on \: cube \\ \  \textless \ br /\  \textgreater \
_______________________
No copied answer
✔️✔️Only explained answers

Attachments:

Answers

Answered by IISLEEPINGBEAUTYII
2

Answer:

Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.

Step-by-step Explanation :

GivEn :

Density of water, ϱ = 10³kg/m³

Height = 12 m

g = 10m/s²

To find :

Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) =

SoluTion :

We know that,

\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = \rho \times g \times h \\ \\\end{gathered} < /p > < p > \end{gathered}

⟶Hydrostaticpressure=ρ×g×h

</p><p>

Substituting the values,

\begin{gathered} < /p > < p > \begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{3} \times 10 \times 12 \\ \\\end{gathered} < /p > < p > < /p > < p > \end{gathered}

</p><p>

⟶Hydrostaticpressure=10

3

×10×12

</p><p></p><p>

\begin{gathered} < /p > < p > \begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{4} \times 12 \\ \\\end{gathered} < /p > < p > \end{gathered}

</p><p>

⟶Hydrostaticpressure=10

4

×12

</p><p>

\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = 10000 \times 12 \\ \\\end{gathered} < /p > < p > \end{gathered}

⟶Hydrostaticpressure=10000×12

</p><p>

\begin{gathered}\begin{gathered}\sf \therefore { \blue{Hydrostatic \: pressure = 120000 \: Pa}} \\ \\\end{gathered} < /p > < p > \end{gathered}

∴Hydrostaticpressure=120000Pa

</p><p>

Hence, Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.

Answered by amisha8195
2

Answer:

Given :-

Area of the triangle = 126 cm²

Base of the triangle = 56 m

To Find :-

Height of the triangle.

Solution :-

Area of the triangle :-

\green{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times base \times height }:⟹Area=

2

1

×base×height

\green{:\implies\:\:\:}\sf{126 = \dfrac{1}{2} \times 56 \times h }:⟹126=

2

1

×56×h

\green{:\implies\:\:\:}\sf{126 = 28 \times h }:⟹126=28×h

\green{:\implies\:\:\:}\sf{h= \dfrac{126}{28} }:⟹h=

28

126

\green{:\implies \:\:\:}\underline{\boxed{\pink{\mathfrak{h = 4.5\:m}}}}:⟹

h=4.5m

∴ Height of the triangle = 4.5 m

To check ↓

Area of the triangle :-

\blue{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times b \times h }:⟹Area=

2

1

×b×h

\blue{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times 56 \times 4.5 }:⟹Area=

2

1

×56×4.5

\blue{:\implies\:\:\:}\sf{Area = 28 \times 4.5 }:⟹Area=28×4.5

\blue{:\implies\:\:\: }\underline{\boxed{\purple{\mathfrak{Area = 126 \:cm^2}}}}:⟹

Area=126cm

2

Hence Verified! :D

Similar questions