_______________________
No copied answer
✔️✔️Only explained answers
Answers
Answer:
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.
Step-by-step Explanation :
GivEn :
Density of water, ϱ = 10³kg/m³
Height = 12 m
g = 10m/s²
To find :
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) =
SoluTion :
We know that,
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = \rho \times g \times h \\ \\\end{gathered} < /p > < p > \end{gathered}
⟶Hydrostaticpressure=ρ×g×h
</p><p>
Substituting the values,
\begin{gathered} < /p > < p > \begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{3} \times 10 \times 12 \\ \\\end{gathered} < /p > < p > < /p > < p > \end{gathered}
</p><p>
⟶Hydrostaticpressure=10
3
×10×12
</p><p></p><p>
\begin{gathered} < /p > < p > \begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{4} \times 12 \\ \\\end{gathered} < /p > < p > \end{gathered}
</p><p>
⟶Hydrostaticpressure=10
4
×12
</p><p>
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = 10000 \times 12 \\ \\\end{gathered} < /p > < p > \end{gathered}
⟶Hydrostaticpressure=10000×12
</p><p>
\begin{gathered}\begin{gathered}\sf \therefore { \blue{Hydrostatic \: pressure = 120000 \: Pa}} \\ \\\end{gathered} < /p > < p > \end{gathered}
∴Hydrostaticpressure=120000Pa
</p><p>
Hence, Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.
Answer:
Given :-
Area of the triangle = 126 cm²
Base of the triangle = 56 m
To Find :-
Height of the triangle.
Solution :-
Area of the triangle :-
\green{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times base \times height }:⟹Area=
2
1
×base×height
\green{:\implies\:\:\:}\sf{126 = \dfrac{1}{2} \times 56 \times h }:⟹126=
2
1
×56×h
\green{:\implies\:\:\:}\sf{126 = 28 \times h }:⟹126=28×h
\green{:\implies\:\:\:}\sf{h= \dfrac{126}{28} }:⟹h=
28
126
\green{:\implies \:\:\:}\underline{\boxed{\pink{\mathfrak{h = 4.5\:m}}}}:⟹
h=4.5m
∴ Height of the triangle = 4.5 m
To check ↓
Area of the triangle :-
\blue{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times b \times h }:⟹Area=
2
1
×b×h
\blue{:\implies\:\:\:}\sf{Area = \dfrac{1}{2} \times 56 \times 4.5 }:⟹Area=
2
1
×56×4.5
\blue{:\implies\:\:\:}\sf{Area = 28 \times 4.5 }:⟹Area=28×4.5
\blue{:\implies\:\:\: }\underline{\boxed{\purple{\mathfrak{Area = 126 \:cm^2}}}}:⟹
Area=126cm
2
Hence Verified! :D