Science, asked by thapaavinitika6765, 8 months ago

\theta =\arctan \left(\frac{30+18\sin \left(30^{\circ \:}\right)}{18\cos \left(30^{\circ \:}\right)-6}\right)

solve

Answers

Answered by Anonymous
0

Explanation:

Explanation:

  \sf \to \: \theta =\arctan \left(\frac{30+18\sin \left(30^{\circ \:}\right)}{18\cos \left(30^{\circ \:}\right)-6}\right) \\  \\ \sf \to \: \theta =\arctan \left(\frac{30+18\sin \left(30^{\circ \:}\right)}{18\sin\left(60^{\circ \:}\right)-6}\right) \\  \\ \sf \to \red{ \theta =\arctan \left(\frac{5+ \left(30^{\circ \:}\right)}{\left(60^{\circ \:}\right)}\right)} \\  \\

Answered by Anonymous
1

θ=\arctan \left(\frac{30+18\sin \left(30^{\circ \:}\right)}{18\cos \left(30^{\circ \:}\right)-6}\right)\quad :\quad θ=\arctan \left(\frac{13\left(3\sqrt{3}+2\right)}{23}\right)\quad \left(\mathrm{Decimal}:\quad θ=1.32971\dots \right)

\frac{30+18\sin \left(30^{\circ \:}\right)}{18\cos \left(30^{\circ \:}\right)-6}=\frac{13}{3\sqrt{3}-2}

θ=\arctan \left(\frac{13}{3\sqrt{3}-2}\right)

\mathrm{Simplify}

θ=\arctan \left(\frac{13\left(3\sqrt{3}+2\right)}{23}\right)

Consider taking I as theta

Similar questions